FL MC EF WDM - \quad -

 Ethernet FO converter for bidirectional data trans

 Ethernet FO converter for bidirectional data transmission via a single optical fiber (SC simplex)

mission via a single optical fiber (SC simplex)}

1 Description

The FL MC EF WDM... media converters enable full duplex communication via a single glass fiber thanks to WDM (wavelength division multiplex) technology. A 10/100Base$T(X)$ Ethernet interface is converted into an optical fiber. Both devices use 1310 nm and 1550 nm wavelengths to transmit and receive. Devices A and B are used as a set.
Transmission via a single fiber provides many advantages. You save on optical fibers and plugs. Double the bandwidth can be achieved with the existing cabling. WDM media converters are particularly suitable for rotating applications with optical rotary transformers, such as wind turbine generators.

Features

- Full duplex transmission via a single optical fiber
- 10/100Base-T(X) auto negotiation
- Auto MDI/MDIx switchover
- Operating mode and speed can be set manually
- Link fault pass through (LFP)
- Far End Fault signaling (FEF)
- SC simplex connection
- Redundant power supply possible
- Extended temperature range of $-40^{\circ} \mathrm{C} \ldots+65^{\circ} \mathrm{C}$
- Mounting on a 35 mm DIN rail

WARNING: Explosion hazard when used in potentially explosive areas
The device is a category 3 item of electrical equipment. Follow the instructions provided here during installation and observe the safety notes.

Make sure you always use the latest documentation.
It can be downloaded from the product at phoenixcontact.net/product/2902660.

For data transmission, you always require a type A device and a type B device for the remote station!
This document is valid for the products listed in the "Ordering data".
2 Table of contents
1 Description 1
2 Table of contents 2
3 Ordering data 3
4 Technical data 5
4.1 UL Notes 7
5 Safety regulations and installation notes 8
5.1 Installation and operation 8
5.2 Safety regulations for installation in potentially explosive areas 8
6 Structure 9
6.1 Dimensions 9
6.2 Block diagram 9
6.3 Function elements 10
6.4 Diagnostics and status indicators 10
$7 \quad$ Configuration via DIP switches 11
7.1 Setting data transmission (DIP 1, DIP 2, and DIP 3) 11
7.2 Pause frame (DIP 4) 12
7.3 Link fault pass through (DIP 6) 12
8 Assembly 12
8.1 Mounting on a DIN rail 12
8.2 Combined assembly 13
8.3 Removal 13
9 Supply voltage 13
9.1 Operation as a single device 13
9.2 Combined operation with a system power supply 13
10 Twisted pair interface (TP port). 14
11 Fiber optic interface (FO port) 14
12 Error localization 15
12.1 Normal operation 15
12.2 Fault on the copper cable 15
12.3 Fault on the fiber optic cable 15

3 Ordering data

Description

FO converter (replacement device A), for full duplex transmission from 10/100Base-T(X) to individual simplex fiberglass with WDM (wavelength division multiplex) technology, SC simplex fiber optic connection (1310/1550 nm). Device set (type A and type B) required for operation.
FO converter (replacement device B), for full duplex transmission from 10/100Base-T(X) to individual simplex fiberglass with WDM (wavelength division multiplex) technology, SC simplex fiber optic connection ($1550 / 1310 \mathrm{~nm}$). Device set (type A and type B) required for operation.
FO converter set, consisting of type A devices and type B devices, for full duplex transmission from 10/100Base-T(X) to individual simplex fiberglass with WDM (wavelength division multiplex) technology. SC simplex fiber optic connection (1550/1310 nm).

Accessories

CAT5-SF/UTP cable (J-02YS(ST)C HP $2 \times 2 \times 24$ AWG),
heavy-duty installation cable, $2 \times 2 \times 0.22 \mathrm{~mm}^{2}$, solid conductor, shielded, outer sheath: 7.8 mm diameter, inner sheath: $5.75 \mathrm{~mm} \pm 0.15 \mathrm{~mm}$ diameter

CAT5-SF/UTP cable (J-LIO2YS(ST)C H $2 \times 2 \times 26$ AWG),
light-duty, flexible installation cable $2 \times 2 \times 0.14 \mathrm{~mm}^{2}$, stranded, shielded, outer sheath: $5.75 \mathrm{~mm} \pm 0.15 \mathrm{~mm}$ diameter
Crimping pliers, for assembling the RJ45 plugs FL PLUG RJ45..., for assembly on site

Plug component, Nominal current: 8 A , Nominal current (Ex): 8 A , Nominal voltage (Ex): 125 V , Number of positions: 5, Pitch: 3.81 mm ,
Articles with gold-plated contacts, bus connectors for connecting with electronic housings

Primary-switched MINI POWER supply for DIN rail mounting, input: 1-phase, output: 24 V DC/1.5 A
DIN rail connector for DIN rail mounting. Universal for TBUS housing.
Gold-plated contacts, 5-pos. Header, Nominal current: 8 A,
Number of positions: 5 , Pitch: 3.81 mm , Articles with gold-plated contacts, bus connectors for connecting with electronic housings
Assembled fiber optic cable, break-out cable, fiberglass multi-mode 50/125 $\mu \mathrm{m}$, connector: LC/SC duplex, degree of protection: IP20, for installation in cable ducts or control cabinets, length: 1 m

Assembled fiber optic cable, break-out cable, fiberglass multi-mode 50/125 $\mu \mathrm{m}$, connector: LC/SC duplex, degree of protection: IP20, for installation in cable ducts or control cabinets, length: 2 m

Assembled FO cable, break out cable, multi-mode fiberglass $50 / 125 \mu \mathrm{~m}$, plug: LC / SC-Duplex, protection type: IP20, for installation in cable ducts or control cabinets, length: 5 m
Assembled FO cable, break out cable, multi-mode fiberglass $50 / 125 \mu \mathrm{~m}$, connector: SC Duplex / SC-Duplex, protection type: IP20, for installation in cable ducts or control cabinets, length: 1 m

Assembled FO cable, break out cable, multi-mode fiberglass $50 / 125 \mu \mathrm{~m}$, connector: SC Duplex / SC-Duplex, protection type: IP20, for installation in cable ducts or control cabinets, length: 2 m

Assembled FO cable, break out cable, multi-mode fiberglass $50 / 125 \mu \mathrm{~m}$, connector: SC Duplex / SC-Duplex, protection type: IP20, for installation in cable ducts or control cabinets, length: 5 m
Assembled FO cable, break out cable, multi-mode fiberglass $50 / 125 \mu \mathrm{~m}$, connector: SC Duplex / B-FOC, protection type: IP20, for installation in cable ducts or control cabinets, length: 1 m
Assembled FO cable, break out cable, multi-mode fiberglass $50 / 125 \mu \mathrm{~m}$, connector: SC Duplex / B-FOC (ST), protection type: IP20, for installation in cable ducts or control cabinets, length: 2 m
Type
FL MC EF WDM-A SC
FL MC EF WDM-B SC
FL MC EF WDM-SET SC

WDM-SET SCT
FL CAT5 HEAVY
FL CAT5 FLEX
FL CRIMPTOOL
ME 22,5 TBUS 1,5/ 5-ST-3,81 GN
MINI-SYS-PS-100-240AC/24DC/1.5
ME 17,5 TBUS 1,5/ 5-ST-3,81 GN
FL MM PATCH 1,0 LC-SC
FL MM PATCH 2,0 LC-SC
FL MM PATCH 5,0 LC-SC
FL MM PATCH 1,0 SC-SC
FL MM PATCH 2,0 SC-SC

FL MM PATCH 2,0 SC-SC

FL MM PATCH 1,0 SC-ST

FL MM PATCH 2,0 SC-ST

Order No.
2902658

Order No.

2744814

$2744869 \quad 1$

2866983

2989161

2901800

2901807

2901809

2901810
1

1

1

1

1

Pcs./Pkt.
1

1

1

Pcs./Pkt.

1

50
10

1
\square

Accessories

Assembled FO cable, break out cable, multi-mode fiberglass $50 / 125 \mu \mathrm{~m}$, connector: SC Duplex / B-FOC (ST), protection type: IP20, for installation in cable ducts or control cabinets, length: 5 m
Assembled FO cable, break out cable, multi-mode fiberglass $50 / 125 \mu \mathrm{~m}$, connector: SC Duplex / B-FOC (ST), protection type: IP20, for installation in cable ducts or control cabinets, length: 1 m
Assembled FO cable, break out cable, multi-mode fiberglass 50/125 $\mu \mathrm{m}$, connector: SC Duplex / SC-RJ, protection type: IP20, for installation in cable ducts or control cabinets, length: 2 m

Assembled FO cable, break out cable, multi-mode fiberglass $50 / 125 \mu \mathrm{~m}$, connector: SC Duplex / B-FOC (ST), protection type: IP20, for installation in cable ducts or control cabinets, length: 5 m
Rugged GOF installation cable (IP20 heads only) for inner areas with highly tear-proof aramid strain-relief elements. Individual elements consist of highly flexible FRNC material. The cable is halogen-free, ozone and UV resistant and has a rugged polyurethane (PUR) outer sheath.

Rugged GOF installation cable for inner areas with highly tear-proof aramid strain-relief elements. Individual elements consist of highly flexible FRNC material. The cable is halogen-free, ozone and UV resistant and has a rugged polyurethane (PUR) outer sheath.
Highly rugged GOF round cable (IP20 heads only) for assembly and for outdoor installation with integrated moisture barrier as well as rodent-proof scrim. Individual elements made from highly flexible FRNC material. The wire is ozone and UV resistant with a very rugged polyethylene outer sheath.

Highly rugged GOF round cable for assembly and for outdoor installation with integrated moisture barrier as well as rodent-proof scrim. Individual elements made from highly flexible FRNC material. The wire is ozone and UV resistant with a very rugged polyethylene outer sheath.

Fiberglass cable, duplex $50 / 125 \mu \mathrm{~m}$, by the meter, without connector, for outdoor installation
Fiberglass cable, duplex $50 / 125 \mu \mathrm{~m}$, by the meter, without connector, for indoor installation

Assembled fiber optic cable, break-out cable, fiberglass single mode $9 / 125 \mu \mathrm{~m}$, connector: LC/SC duplex, degree of protection: IP20, for installation in cable ducts or control cabinets, length: 1 m
Assembled fiber optic cable, break-out cable, fiberglass single mode 9/125 $\mu \mathrm{m}$, connector: LC/SC duplex, degree of protection: IP20, for installation in cable ducts or control cabinets, length: 2 m
Assembled FO cable, break out cable, single mode fiberglass $9 / 125 \mu \mathrm{~m}$, connector: LC / SC Duplex, protection type: IP20, for installation in cable ducts or control cabinets, length: 5 m

Assembled FO cable, break out cable, single mode fiberglass $9 / 125 \mu \mathrm{~m}$, connector: SC Duplex / SC Duplex, protection type: IP20, for installation in cable ducts or control cabinets, length: 1 m
Assembled FO cable, break out cable, single mode fiberglass $9 / 125 \mu \mathrm{~m}$, connector: SC Duplex / SC Duplex, protection type: IP20, for installation in cable ducts or control cabinets, length: 2 m
Assembled FO cable, break out cable, single mode fiberglass $9 / 125 \mu \mathrm{~m}$, connector: SC Duplex / SC Duplex protection type: IP20, for installation in cable ducts or control cabinets, length: 5 m

Assembled FO cable, break out cable, single mode fiberglass $9 / 125 \mu \mathrm{~m}$, connector: SC Duplex / B-FOC (ST), protection type: IP20,
for installation in cable ducts or control cabinets, length: 1 m
Assembled FO cable, break out cable, single mode fiberglass $9 / 125 \mu \mathrm{~m}$, connector: SC Duplex / B-FOC (ST), protection type: IP20,
for installation in cable ducts or control cabinets, length: 2 m
Assembled FO cable, break out cable, single mode fiberglass $9 / 125 \mu \mathrm{~m}$, connector: SC Duplex / B-FOC (ST), protection type: IP20, for installation in cable ducts or control cabinets, length: 5 m

Type

FL MM PATCH 5,0 SC-ST

FL MM PATCH 2,0 SC-SCRJ

FOC-GDM-RUGGED-1016/IP20/...

FOC-GDO-1017/IP20/..

2799432
2799322

2989190

2989297
FL SM PATCH 2,0 LC-SC

FL SM PATCH 5,0 LC-SC
FL SM PATCH 1,0 SC-SC

FL SM PATCH 2,0 SC-SC
FL SM PATCH 5,0 SC-SC

FL SM PATCH 1,0 SC-ST

FL SM PATCH 2,0 SC-ST

FL SM PATCH 5,0 SC-ST
PSM-LWL-GDO- 50/125

PSM-LWL-GDM-RUGGED- 50/125

FL SM PATCH 1,0 LC-SC
2989297

2901827
2901829

2901830
2901831

2901832
2901833

2901834

Order No.
2901811

Pcs./Pkt.

1

1 2901813

2901558

2901559

1

1

1

1

1

Accessories	Type	Order No.	Pcs./Pkt.
RJ45 connector, IP20, CAT5e, 8-pos., with QUICKON fast connection technology, for 26 ... 23 AWG 1-wire and 7-wire conductors, for $4.5 \mathrm{~mm} \ldots 8.0 \mathrm{~mm}$ cable diameter, labeling: TIA 568 B, color: gray RJ45 connector, Degree of protection: IP20, Number of positions: 8, CAT5 (IEC 11801:2002), Material: PA, Connection method: IDC fast connection, Cable exit: straight	VS-08-RJ45-5-Q/IP20	1656725	1
Patch cable, CAT5, assembled, 0.5 m	FL CAT5 PATCH 0,5	2832263	10
Patch cable, CAT5, assembled, 1.0 m	FL CAT5 PATCH 1,0	2832276	10
Patch cable, CAT5, assembled, 2.0 m	FL CAT5 PATCH 2,0	2832289	10
Patch cable, CAT5, assembled, 3.0 m	FL CAT5 PATCH 3,0	2832292	10

4 Technical data

Supply

Supply voltage range	18 V DC ... 30 V DC (Screw connection) 18 V DC ... 30 V DC (as an alternative or redundant, via backplane bus contact and system current supply)
Typical current consumption	$<110 \mathrm{~mA}$ (24 V DC)
Protective circuit	Protection against polarity reversal
Electrical isolation	VCC // FE // Ethernet
Test voltage data interface/power supply	1.5 kV rms (50 Hz , 1 min .)
Torque	$0.56 \mathrm{Nm} \ldots 0.79 \mathrm{Nm}$
Ethernet interface, 10/100BASE-T(X) in acc. with IEEE 802.3u	
Connection method	RJ45 socket, shielded
Conductor cross section	$0.2 \mathrm{~mm}^{2}$... $2.5 \mathrm{~mm}^{2}$ (24 AWG ... 14 AWG)
Transmission speed	10/100 MBit/s
Transmission length	100 m (twisted pair, shielded)
Transmission medium	Copper
Auto-negotiation modes	Auto
Link through	Link fault pass through
MDI-/MDI-X switchover	Auto-MDI(X)
Signal LEDs	Activity, link status, 10/100 Mbps
FO interface	
Data rate	100 Mbps
Connection method	SC simplex
Wavelength	$\begin{aligned} & 1310 \mathrm{~nm} \\ & 1550 \mathrm{~nm} \end{aligned}$
Laser protection	Class 1 according to DIN EN 60825-1
Transmission length incl. 3 dB system reserve	38 km (with F-E 9/125 $0.36 \mathrm{~dB} / \mathrm{km}$) 34 km (with F-E 9/125 $0.4 \mathrm{~dB} / \mathrm{km}$) 28 km (with F-E 9/125 $0.5 \mathrm{~dB} / \mathrm{km}$) 21 km (with F-G 62,5/125 0,7 dB/km F 1000) 5.5 km (with F-G 62.5/125 $2.6 \mathrm{~dB} / \mathrm{km}$ F 600) 21 km (with F-G 50/125 0,7 dB/km F 1200) 9 km (with F-G 50/125 1,6 dB/km F 800)
Transmit capacity, minimum	$\geq-14 \mathrm{dBm}((9 / 125 \mu \mathrm{~m})$ dynamic in link mode (average))
Transmit capacity, maximum	$\leq-8 \mathrm{dBm}((9 / 125 \mu \mathrm{~m})$ dynamic in link mode (average))
Minimum receiver sensitivity	-31 dBm (dynamic in link mode (average))
Overrange receiver	-3 dBm (dynamic in link mode (average))
Signal LEDs	Far end fault (red LED), link status (yellow LED)

General data		
Basic functions	Store-and-forward media converter	
Degree of protection	IP20	
Dimensions (W/H/D)	$22.5 \mathrm{~mm} \times 99 \mathrm{~mm} \times 114.5 \mathrm{~mm}$	
Housing material	PA 6.6-FR green	
Free fall in acc. with IEC 60068-2-32	1 m	
Vibration resistance in acc. with EN 60068-2-6/IEC 60068-2-6	$5 \mathrm{~g}, 150 \mathrm{~Hz}, 2.5 \mathrm{~h}$, in XYZ direction	
Shock in acc. with EN 60068-2-27/IEC 60068-2-27	$25 \mathrm{~g}, 11 \mathrm{~ms}$ period, half-sine shock pulse	
MTTF (mean time to failure) SN 29500 standard, temperature $25^{\circ} \mathrm{C}$, operating cycle 21 \% (5 days a week, 8 hours a day)	1400 Years	
MTTF (mean time to failure) SN 29500 standard, temperature $40^{\circ} \mathrm{C}$, operating cycle 34.25 \% (5 days a week, 12 hours a day)	599 Years	
MTTF (mean time to failure) SN 29500 standard, temperature $40^{\circ} \mathrm{C}$, operating cycle 100% (7 days a week, 24 hours a day)	101 Years	
Electromagnetic compatibility	Conformance with EMC Directive 2004/108/EC	
Ambient conditions		
Ambient temperature (operation)	$-40^{\circ} \mathrm{C} \ldots 65^{\circ} \mathrm{C}$	
Ambient temperature (storage/transport)	$-40^{\circ} \mathrm{C} \ldots 85^{\circ} \mathrm{C}$	
Permissible humidity (operation)	$30 \% \ldots 95 \%$ (non-condensing)	
Permissible humidity (storage/transport)	$30 \% \ldots 95$ \% (non-condensing)	
Altitude	5000 m (For restrictions see manufacturer's declaration) 2000 m (With UL approval)	
Approvals / Certificates		
Conformance	CE-compliant	
Free from substances that could impair the application of coating	according to P-VW 3.10.757650 VW-AUDI-Seat central standard	
ATEX Please follow the special installation instructions in the documentation!	§x $\\|^{\prime} 3$ G Ex nA IIC T4 Gc X	
UL, USA / Canada	cULus listed UL 508 Class I, Zone 2, AEx nA IIC T4 Class I, Zone 2, Ex nA IIC T4 Gc X Class I, Div. 2, Groups A, B, C, D	
Standards/regulations	EN 60950-1	
Shipbuilding approval	DNV	

Conformance with EMC Directive 2004/108/EC

Noise immunity according to EN 61000-6-2

EN 61000-4-2

Contact discharge

Discharge in air $\quad \pm 8 \mathrm{kV}$ (Test Level 3)
Comments Criterion B

EN 61000-4-3

Frequency range	$80 \mathrm{MHz} \ldots 3 \mathrm{GHz}$ (Test Level 3)
Field intensity	$10 \mathrm{~V} / \mathrm{m}$

Comments Criterion A

EN 61000-4-4
Input

Signal

Comments

EN 61000-4-5

Signal
Comments
EN 61000-4-6
Frequency range

Voltage

Comments

$\pm 2 \mathrm{kV}$ (Test Level 3)
$\pm 2 \mathrm{kV}$ (Test Level 3)
Criterion B
$\pm 0.5 \mathrm{kV}$ (DC supply)
$\pm 1 \mathrm{kV}$ (Data line, asymmetrical)

Criterion B
0.15 MHz ... 80 MHz

10 V
Criterion A

Emitted interference in acc. with EN 61000-6-4

Noise emission

EN 55022
Class A, industrial applications

Criterion A	Normal operating behavior within the specified limits
Criterion B	Temporary impairment of operating behavior that is corrected by the device itself

4.1 UL Notes

(①). INDUSTRIAL CONTROL EQUIPMENT 11AE
Wire Range: 24-14 AWG
Torque: 5-7 (Lbs-Ins)
Environmental designation: "Open Type Device"
"Pollution Degree 2 Installation Environment"

PROCESS CONTROL EQUIPMENT FOR HAZARDOUS LOCATIONS 31ZN
A This equipment is suitable for use in Class I, Zone 2, AEx nA IIC T4; Ex nA IIC T4 Gc X or Class I, Division 2, Groups A, B, C, D or non-hazardous locations only.
B Provision shall be made to prevent transient disturbances of more than 140% of the rated supply voltage.
C The device must be installed in a Class I, Zone 2 certified overall enclosure rated IP54 with tool-accessible only cover or door and in pollution degree 2 environment only.
D Unit shall be supplied by Limited Energy circuit according to clause 9.4 of UL 61010-1 3rd edition of Limited Power Source according to clause 2.5 of UL 60950-1 or NEC Class 2.
E Conductor temperature rating must be $72^{\circ} \mathrm{C}$ or higher.
F Maximum relative humidity 80% for temperatures up to $31^{\circ} \mathrm{C}$ decreasing linearly to 50% relative humidity at $40^{\circ} \mathrm{C}$.

5 Safety regulations and installation notes

5.1 Installation and operation

CAUTION:

Observe the following safety notes when using the FO converter.

- The category 3 device is suitable for installation in potentially explosive area zone 2 . It fulfills the requirements of EN 60079-0:2009 and EN 60079-15:2010.
- Installation, operation, and maintenance may only be carried out by qualified electricians. Follow the installation instructions as described.
- When installing and operating the device, the applicable regulations and safety directives (including national safety directives), as well as general technical regulations, must be observed. The technical data is provided in the package slip and on the certificates (conformity assessment, additional approvals where applicable).
- The device must not be opened or modified apart from the configuration of the DIP switches. Do not repair the device yourself but replace it with an equivalent device. Repairs may only be carried out by the manufacturer. The manufacturer is not liable for damage resulting from a failure to comply.
- The IP20 protection (IEC 60529/EN 60529) of the device is intended for use in a clean and dry environment. The device must not be subject to mechanical strain and/or thermal loads, which exceed the limits described.
- The device is not designed for use in atmospheres with a danger of dust explosions.
- If dust is present, it is necessary to install into a suitable approved housing, whereby the surface temperature of the housing must be taken into consideration.
- The switches of the device that can be accessed may only be actuated when the power supply to the device is disconnected.

5.2 Safety regulations for installation in potentially explosive areas

WARNING: Explosion hazard when used in potentially explosive areas

Please make sure that the following notes and instructions are observed.

- Observe the specified conditions for use in potentially explosive areas.
- At the time of installation, use an approved housing (minimum protection IP54), which meets the requirements of EN 60079-15. Within this context, observe the requirements of IEC 60079-14/EN 60079-14.
- In zone 2, only connect devices to the supply and signal circuits that are suitable for operation in the Ex zone 2 and the conditions at the installation location.
- In potentially explosive areas, terminals may only be snapped onto or off the DIN rail connector and wires may only be connected or disconnected when the power is switched off.
- The device must be stopped and immediately removed from the Ex area if it is damaged, was subject to an impermissible load, stored incorrectly or if it malfunctions.
- For reliable operation, the RJ connection must be equipped with a fully functional locking clip. Repair any damaged plugs immediately.

6 Structure

6.1 Dimensions

Figure 1 Housing dimensions

6.2 Block diagram

Figure 2 Block diagram

6.3 Function elements

Figure 3 Function elements

124 V DC supply voltage
224 V DC supply voltage, (Redundancy)
3 Fiber optic (FO-) interface, SC simplex
4 RJ45 Ethernet port, 10/100 Base-T(X)
5 LED Link/Activity/10/100
6 LED HD/FD
7 LED LINK
8 LED FEF
9 LED VCC
10 Functional earth ground
11 DIP switch

6.4 Diagnostics and status indicators

Ethernet interface (TP port)				
5	Link/Activity/10/100			
		Yellow	ON	10 Mbps link
			Flashing	10 Mbps link - active data transmission
		Green	ON	100 Mbps link
			Flashing	100 Mbps link - active data transmission
6	HD/FD	Green	OFF	Half duplex transmission
			ON	Full duplex transmission

Fiber optics interface (FO port)
7 LINK Yellow ON Fiber optics link available, no data communication
Flashing Data transmission at FO port
8 FEF Red ON
Far end fault has occurred. Remote station reports: "no light".

Supply voltage

9 VCC Green ON Supply voltage OK

Far End Fault signal (FEF)

If the copper connection is interrupted at one of the FO converters, data communication for both FO converters in both the optical and copper segment is disabled by the link fault pass through function. In this case, all Link LEDs go out. However, in order that error diagnostics can be carried out, the red FEF LED lights up on the FO converter where the copper segment is interrupted.

7 Configuration via DIP switches

NOTE: electrostatic discharge!

The device contains components that can be damaged or destroyed by electrostatic discharge. When handling the device, observe the necessary safety precautions against electrostatic discharge (ESD) according to EN 61340-5-1 and IEC 61340-5-1.

Only select the mode of operation when the power is disconnected! The change is activated after renewed power up.

Figure 4 Opening the housing

- Disengage the housing cover with a screwdriver (A).
- Then carefully pull the PCB out of the housing as far as possible (B).
By default, all DIP switches are in the "OFF" position. The copper side of the device operates in "Auto negotiation" mode.

Figure 5 DIP switches

DIP	ON	OFF (default setting)	
$\mathbf{6}$	LFP deactivated (local)	LFP activated (global)	
$\mathbf{5}$	Not used		
$\mathbf{4}$	Pass pause frame	Drop pause frame	
$\mathbf{3}$	Half duplex transmission	Full duplex transmission	
$\mathbf{2}$	10 Mbps	100 Mbps	
$\mathbf{1}$	Fixed transmission speed on the copper side	Auto negotiation	

7.1 Setting data transmission (DIP 1, DIP 2, and DIP 3)

DIP 1 = OFF: the connected end devices negotiate 10/100 Mbps transmission speed and half/full transmission mode directly. The entire path behaves like a directly connected copper cable.
DIP $1=$ ON: you set the transmission speed and mode manually with DIP switches 2 and 3 .

DIP 1 OFF Auto negotiation
DIP 1 ON DIP 2 OFF 100 Mbps
ON 10 Mbps
DIP 3 OFF Full duplex transmission
ON Half duplex transmission
If DIP switch 1 is in the "OFF" position, the position of DIP switch 2 and 3 is not queried.

$7.2 \quad$ Pause frame (DIP 4)

A pause frame signal can request an Ethernet device to temporarily interrupt data transmission. This avoids overloading the partner when, for example, communication takes place with different transmission speeds.
DIP 4 = OFF: the device does not respond to an incoming pause frame signal. It is also not forwarded. A pause frame signal cannot be generated by the device itself.
The transmission of pause frame signals is negotiated in sections.

DIP 4 = ON: the device responds to pause frame signals or forwards them. A pause frame signal can be generated by the device itself.

7.3 Link fault pass through (DIP 6)

The LFP (link fault pass through) function provides permanent connection monitoring. The link on the fiber optic connection switches off if the connection is lost on the copper side of a FO converter. The FO converter on the other side registers the aborted link via the fiber optic path and likewise interrupts the connection for its twisted pair segment.
The entire connection over the optical path is therefore as transparent as it would be were communication purely cop-per-based. Both sides of the network connection can therefore detect a lost link immediately and respond accordingly. In the event of an error, this keeps the network load low and ensures that redundancy mechanisms can be activated.
DIP $6=$ OFF: the LFP function is activated. In the event of a fault, the entire connection is disabled (global).
DIP $6=$ ON: the LFP function is deactivated.
In the event of a fault, only the interrupted segment is disabled (local). This is useful during startup and in the event of an error.

8 Assembly

CAUTION: Electric shock

The device is only intended for operation with SELV according to IEC 60950/EN 60950/ VDE 0805.

NOTE: Malfunction

Connect the DIN rail to protective earth ground using a grounding terminal block. The devices are grounded when they are snapped onto the DIN rail (installation according to PELV).
This ensures that the shielding is effective. Connect protective earth ground with low impedance.

8.1 Mounting on a DIN rail

Figure 6 Mounting on a DIN rail

- To avoid contact resistance, only use clean, corrosionfree 35 mm DIN rails according to DIN EN 60715.
- Install an end bracket next to the left-hand device to prevent the devices from slipping.
- Place the device onto the DIN rail from above. Push the module from the front toward the mounting surface until it audibly engages.
- Snap the other devices that are to be contacted onto the DIN rail next to one another.

8.2 Combined assembly

A connection station must not consist of more than ten devices.

Observe the snap-in direction of the device and DIN rail connector: snap-on foot below and plug on the left.

Figure 7 Combined assembly
The DIN rail connector is used to bridge the power supply and communication.

- Connect the DIN rail connectors (TBUS) (Order No. 2707437, 1 pc. per device) together for a connection station.
- Push the connected DIN rail connectors into the DIN rail.
- Place the device onto the DIN rail from above. Push the module from the front toward the mounting surface until it audibly engages.

8.3 Removal

- Push down the locking tab with a screwdriver, needlenose pliers or similar.
- Slightly pull the bottom edge of the device away from the mounting surface.
- Pull the device away from the DIN rail.

9 Supply voltage

The device is operated using a 24 V DC SELV.

124 V DC supply voltage
20 V DC supply voltage
324 V DC supply voltage (Redundancy)
40 V DC supply voltage
(Redundancy)

9.1 Operation as a single device

- Supply voltage to the device via terminal blocks 1 (24 V) and 2 (0 V).
- Optional: connect an additional power supply unit to terminal blocks 3 and 4 to provide a redundant power supply.

9.2 Combined operation with a system power supply

- Connect a system power supply to two DIN rail connectors on the left of the group. (MINI-SYS-PS-100-240AC/24DC/1.5, Order No. 2866983 or MINI-PS100-240AC/24DC/1.5/EX, Order No. 2866653 and two DIN rail connectors, Order No. 2709561)
- A second power supply unit can be used to create a redundant supply concept.

10 Twisted pair interface (TP port)

(1)
NOTE: Interference
Only use shielded twisted pair cables and corresponding shielded RJ45 connectors.

One Ethernet interface in RJ45 format is on the front of the device, which can only be connected to twisted pair cables with an impedance of 100Ω.
The data transmission speed is $10 / 100 \mathrm{Mbps}$

Figure 8 Pin assignment

- Push the Ethernet cable with the crimped RJ45 plug into the TP interface until the plug engages with a click. Observe the plug coding.

11 Fiber optic interface (FO port)

WARNING: Risk of eye injury

During operation, do not look directly into transmitter diodes or use visual aids to look into the glass fibers. The infrared light is not visible.

Avoid contamination.
Remove the dust protection caps just before the connectors are connected!

When using fiber optics, observe the fiber optic installation guidelines, DB GB IBS SYS FOC ASSEMBLY, Order No. 9423439.

Figure $9 \quad$ Connect SC simplex plug

- Remove the dust protection cap.
- Insert the fiber optics cable into the SC simplex connector of the transmit and receive channel. Make sure that the coding is in the correct position.
- Ensure the connector is secure by gently pulling it.

12 Error localization

12.1 Normal operation

Figure 10 Diagnostics indicators in normal operation

12.2 Fault on the copper cable

The diagnostics indicator depends on DIP 6.
LFP activated, global (DIP $6=$ OFF, default setting)

Figure 11 LAN fault with LFP activated, global
DIP 6 = OFF: by default, all Link LEDs go out in the event of a fault in a twisted pair segment.
The red FEF LED indicates the FO converter where the twisted pair segment failed.

LFP deactivated, local (DIP $6=0 \mathrm{~N}$)

Figure 12 LAN fault with LFP deactivated, local
DIP $6=$ ON: in the "LFP deactivated, local" setting, only the Link LEDs of the corresponding port go out in the event of a fault in a twisted pair segment. The Link LEDs at the copper port on the other media converter and for the fiber optic connection are on. The "LFP deactivated, local" setting therefore enables more precise diagnostics.

12.3 Fault on the fiber optic cable

Figure 13 Fiber optic fault
In the case of FL MC EF WDM... FO converters, only one glass fiber is used to transmit and receive. Therefore, in the event that the fiber optic connection is lost, it may not be easy to detect which FO converter was the first to stop receiving data.
In this case, the FEF LED cannot be used to determine whether and at which FO converter the fiber optic connection is interrupted.

