

IA80C152 Universal Communications Controller Data Sheet

IA211040524-06 UNCONTROLLED WHEN PRINTED OR COPIED Page 1 of 61

Copyright © 2010 by Innovasic Semiconductor, Inc.

Published by Innovasic Semiconductor, Inc. 3737 Princeton Drive NE, Suite 130, Albuquerque, NM 87107

Intel[®] is a registered trademark of Intel Corporation. MILES[™] is a trademark of Innovasic Semiconductor, Inc.

IA211040524-06 UNCONTROLLED WHEN PRINTED OR COPIED Page 2 of 61

TABLE OF CONTENTS

List o	of Fig	ures		5
List o	of Tał	oles		6
1.	Intro	duction		7
	1.1	General	Description	7
	1.2	Features		8
2.	Pack	aging, Pir	n Descriptions, and Physical Dimensions	9
	2.1	Package	s and Pinouts	9
		2.1.1 J	JA/JC	10
		2.1.2 J	IB/JD	13
		2.1.3 H	Physical Dimensions	16
	2.2	I/O Sign	al Description	17
3.	Max	imum Rat	ings, Thermal Characteristics, and DC Parameters	20
4.	Devi	ce Archite	ecture	22
	4.1	Function	nal Block Diagram	22
	4.2	Memory	⁷ Space	23
5.	Perip	oheral Arc	chitecture	25
	5.1	Register	s and Interrupts	25
	5.2	Register	Set Descriptions	27
		5.2.1 A	A* (0E0h)	27
		5.2.2 A	ADR0,1,2,3 (095h, 0A5h, 0B5h, 0c5h)	27
		5.2.3 A	AMSK0,1 (0D5h, 0E5h)	28
			B* (0F0h)	28
			BAUD (094h)	
		5.2.6 I	BCRL0, BCRH0 (0E2h, 0E3h)	28
			BCRL1, BCRH1 (0F2h, 0F3h)	
			BKOFF (0C4h)	
			DARL0, DARH0 (0C2h, 0C3h)	
			DARL1, DARH1 (0D2h, 0D3h)	
			DCON0,1 (092h, 093h)	
			DPL, DPH (082h, 083h)	
		5.2.13	GMOD (084h)	30
			$E^* (0A8h)$	
			EN1* (0C8h)	
			(FS (0A4h)	
			(P* (0B8h)	
			IPN1* (0F8h)	
			MYSLOT (0F5h)	34
			P0*, P1*, P2*, P3*, P4*, P5, P6 (080h, 090h, 0A0h, 0Boh, 0C0h,	
			091h, 0A1h)	
			PCON (087h)	
		5.2.22 H	PRBS (0E4h)	36

	5.2.23	PSW* (0D0h)	
	5.2.24	RFIFO (0F4h)	
	5.2.25	RSTAT* (0E8h)	
	5.2.26	SARL0, SARH0 (0A2h, 0A3h)	
	5.2.27	SARL1, SARH1 (0B2h, 0B3h)	
	5.2.28	SBUF (099h)	
	5.2.29	SCON* (098h)	
	5.2.30	SLOTTM (0B4h)	
	5.2.31	SP (081h)	
	5.2.32	TCDCNT (0D4h)	
	5.2.33	TCON* (088h)	
	5.2.34	TFIFO (085h)	40
	5.2.35	TH0, TL0 (08Ch, 08Ah)	40
	5.2.36	TH1, TL1 (08Dh, 08Bh)	41
	5.2.37	TMOD (089h)	41
	5.2.38	TSTAT* (0D8h)	41
	5.3 Power	Conservation Modes	42
		tor Pins	
6.	Instruction S	et Summary Table	50
7.	AC Characte	eristics	56
8.	Innovasic/In	tel Part Number Cross-Reference Table	57
9.	Errata		58
	9.1 Errata	Summary	58
	9.2 Errata	Detail	58
10.	Revision His	story	60
11.	For Addition	nal Information	61

LIST OF FIGURES

Figure 1.	JA/JC Versions Package Diagram	10
Figure 2.	JB/JD Versions Package Diagram	13
Figure 3.	Package Dimensions	16
Figure 4.	Functional Block Diagram	22
Figure 5.	Memory Space	24
Figure 6.	External Program Memory Read Cycle	44
Figure 7.	External Data Memory Read Cycle	44
Figure 8.	External Data Memory Write Cycle	45
Figure 9.	External Clock Drive Waveform	46
Figure 10	Shift Register Mode Timing Waveforms	47
Figure 11	. GSC Receiver Timings (Internal Baud Rate Generator)	48
Figure 12	. GSC Transmit Timings (Internal Baud Rate Generator)	48
-	. GSC Timings (External Clock)	

IA211040524-06 UNCONTROLLED WHEN PRINTED OR COPIED Page 5 of 61

LIST OF TABLES

Table 1. IC Version Differences	7
Table 2. JA/JC Versions Numeric Pin Listing	11
Table 3. JA/JC Versions Alphabetic Pin Listing	12
Table 4. JB/JD Versions Numeric Pin Listing	14
Table 5. JB/JD Versions Alphabetic Pin Listing	15
Table 6. I/O Signal Descriptions	17
Table 7. Absolute Maximum Ratings	20
Table 8. Thermal Characteristics	20
Table 9. DC Parameters	21
Table 10. Summary of Program Memory Fetches	25
Table 11. List of Registers	25
Table 12. List of Interrupts	27
Table 13. DCON0,1 Register	29
Table 14. GMOD Register	30
Table 15. IE* Register	31
Table 16. IEN1* Register	32
Table 17. IP* Register	33
Table 18. IPN1* Register	33
Table 19. MYSLOT Register	34
Table 20. P0*, P1*, P2*, P3*, P4*, P5, P6 Register	35
Table 21. PCON Register	35
Table 22. PSW* Register	36
Table 23. RSTAT* Register	37
Table 24. SCON* Register	38
Table 25. TCON* Register	40
Table 26. TMOD Register	41
Table 27. TMOD Register	41
Table 28. Power Conservation Modes	43
Table 29. External Clock Drive	
Table 30. Local Serial Channel Timing—Shift Register Mode	46
Table 31. Global Serial Port Timing—Internal Baud Rate Generator	
Table 32. Global Serial Port Timing—External Clock	49
Table 33. Instruction Set Summary	
Table 34. External Program and Data Memory Characteristics	56
Table 35. Innovasic/Intel Part Number Cross-Reference	
Table 36. Summary of Errata	58
Table 37. Revision History	60

1. Introduction

The IA80C152 is a "plug-and-play" drop-in replacement for the original Intel 80C152. Innovasic produces replacement ICs using its MILES, or Managed IC Lifetime Extension System, cloning technology. This technology produces replacement ICs far more complex than "emulation" while ensuring they are compatible with the original IC. MILES captures the design of a clone so it can be produced even as silicon technology advances. MILES also verifies the clone against the original IC so that even the "undocumented features" are duplicated. This data sheet presents engineering information about the IA80C152 including functional and I/O descriptions, electrical characteristics, and applicable timing.

1.1 General Description

The IA80C152 is a Universal Communications Controller (UCC) that is pin-for-pin compatible with the Intel 80C152. This version of the UCC is a ROM-less version. The ROM version is identified as the 83C152 and can be easily derived from the 80C152 using a customer furnished ROM program. The IA80C152 can be programmed with the same software development tools and can transmit and receive using the same communication protocols as the Intel 80C152 making the IA80C152 a drop-in replacement.

Table 1 below cross-references IA80C152 versions with protocol, package, and I/O Port capability. Pinout diagrams are provided in Figures 1, 2, and 3.

Innovasic	CSMA/CD,	5 I/O	7 I/O	68-Lead
Part Number	SDLC/HDLC, User-Defined	Ports	Ports	PLCC
IA80C152JA	\checkmark	\checkmark		~
IA80C152JB	\checkmark		✓	✓
IA80C152JC	\checkmark	✓		\checkmark
IA80C152JD	\checkmark		✓	✓

Table 1. IC Version Differences

The only difference between The Innovasic IA80C152 and the Intel 80C152 is that all protocols are available in all IC versions. Originally, the Intel 80C152 JC and JD versions were limited to SDLC/HDLC only. Also, Innovasic will support a ROM version (83152) in any of the JA, JB, JC, or JD versions.

Note: If you are using the IA80C152JB/JD in a system that originally used an Intel 80C152JA/JC, please note that the EBEN pin on the Innovasic part has an internal pull down, so it is recommended that you do not connect that pin (NC) on your board for proper functionality. In addition, the two ports that are unused on the JA/JC device (Ports 5 and 6) have internal pullups on the Innovasic device, so it is recommended that you do not connect (NC) these pins.

The IA80C152 is partitioned into three major functional units identified as the C8051, the Direct Memory Access (DMA) Controller, and the Global Serial Channel (GSC). The C8051 is implemented using a CAST, Inc. Intellectual Property (IP) core. This core is instruction set compatible with the 80C51BH, and contains compatible peripherals including a UART interface and timers. The special function registers (SFRs) and interrupts are modified from the original 8051BH to accommodate the additional DMA controller and GSC peripherals.

The DMA Controller is a 2 channel, 8-bit device that is 16-bit addressable. Either channel can access any combination of reads and writes to external memory, internal memory, or the SFR's. Various modes allow the DMA to access the UART, GSC, SFRs, and internal and external memory as well as provide for external control. Since there is only 1 data/program memory bus, only one DMA channel or the microcontroller can have control at any given time. Arbitration within the device makes this control transparent to the programmer.

The GSC is a serial interface that can be programmed to support CSMA/CD, SDLC, user definable protocols, and limited HDLC. Protocol specific features are supported in hardware such as address recognition, collision resolution, CRC generation and errors, automatic re-transmission, and hardware acknowledge. The CSMA/CD protocol meets the requirements of ISO/IEC 8802-3 and ANSI/IEEE Std 802.3 to the extent implemented in the original IC. The SDLC protocol meets the requirements of IBM GA27-3093-04 to the extent implemented in the original IC.

1.2 Features

- Form, Fit, and Function Compatible with the Intel[®] 80C152
- Packaging options available in both standard and RoHS-Compliant:
 68-Pin PLCC (plastic leaded chip carrier)
- 8051 Core with:
 - Direct Memory Access (DMA)
 - Global Serial Channel (GSC)
 - MCS[®] 51-compatible UART
 - Two Timers/Counters
 - Maskable Interrupts
- Memory:
 - 256 bytes internal RAM
 - 64K bytes program memory
 - 64K bytes data memory
- 5 or 7 I/O Ports
- Up to 16.5-MHz Clock Frequency
- Two-Channel DMA With Multiple Transfer Modes
- GSC Provides Support for Multiple Protocols:

IA211040524-06 UNCONTROLLED WHEN PRINTED OR COPIED Page 8 of 61

- CSMA/CD
- SDLC/HDLC
- User Definable
- Separate Transmit & Receive FIFOs
- Special Protocol Features:
 - Up to 2.0625 Mbps Serial Operation
 - CSMA and SDLC Frame Formats with CRC Checking
 - Manchester, NRZ, & NRZI Data Encoding
 - Collision Detection & Resolution in CSMA Mode
- Selectable Full/Half Duplex

2. Packaging, Pin Descriptions, and Physical Dimensions

Information on the packages and pin descriptions is provided in this chapter.

2.1 Packages and Pinouts

The IA80C152 is available in the following packages:

- 68-Pin PLCC pinout JA/JC versions
- 68-Pin PLCC pinout JB/JD versions

2.1.1 JA/JC

The pinout for the JA/JC package is as shown in Figure 1. The corresponding numeric and alphabetic pin listings are provided in Tables 2 and 3.

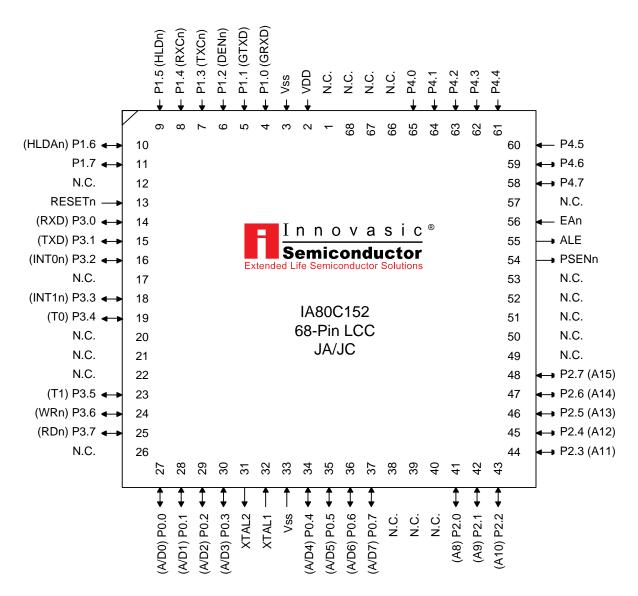


Figure 1. JA/JC Versions Package Diagram

IA211040524-06 UNCONTROLLED WHEN PRINTED OR COPIED Page 10 of 61

	· · ·			
Pin	Name		Pin	Name
1	N.C.		35	(A/D5) P0.5
2	VDD	_	36	(A/D6) P0.6
3	Vss		37	(A/D7) P0.7
4	P1.0 (GRXD)		38	N.C.
5	P1.1 (GTXD)		39	N.C.
6	P1.2 (DENn)		40	N.C.
7	P1.3 (TXCn)		41	(A8) P2.0
8	P1.4 (RXCn)		42	(A9) P2.1
9	P1.5 (HLDn)		43	(A10) P2.2
10	(HLDAn) P1.6		44	P2.3 (All)
11	P1.7		45	P2.4 (A12)
12	N.C.		46	P2.5 (A13)
13	RESETn		47	P2.6 (A14)
14	(RXD) P3.0		48	P2.7 (A15)
15	(TXD) P3.1		49	NC
16	(INT0n) P3.2		50	NC
17	N.C.		51	N.C.
18	(INT1n) P3.3		52	N.C.
19	(T0) P3.4		53	N.C.
20	N.C.		54	PSENn
21	N.C.		55	ALE
22	N.C.		56	EAn
23	(T1) P3.5		57	NC
24	(WRn) P3.6		58	P4.7
25	(RDn) P3.7		59	P4.6
26	N.C.		60	P4.5
27	(A/D0) P0.0		61	P4.4
28	(A/D1) P0.1		62	P4.3
29	(A/D2) P0.2		63	P4.2
30	(A/D3) P0.3		64	P4.1
31	XTAL2		65	P4.0
32	XTAL1		66	NC
33	Vss		67	NC
34	(A/D4) P0.4		68	NC

Table 2. JA/JC Versions Numeric Pin Listing

IA211040524-06 UNCONTROLLED WHEN PRINTED OR COPIED Page 11 of 61

Pin	Name		Pin	Name	
27	(A/D0) P0.0		40	N.C.	
28	(A/D1) P0.1		49	N.C.	
29	(A/D2) P0.2		50	N.C.	
30	(A/D3) P0.3		51	N.C.	
34	(A/D4) P0.4		52	N.C.	
35	(A/D5) P0.5		53	N.C.	
36	(A/D6) P0.6		57	N.C.	
37	(A/D7) P0.7		66	N.C.	
41	(A8) P2.0		67	N.C.	
42	(A9) P2.1		68	N.C.	
43	(A10) P2.2		11	P1.7	
44	(A11) P2.3		65	P4.0	
45	(A12) P2.4		64	P4.1	
46	(A13) P2.5		63	P4.2	
47	(A14) P2.6		62	P4.3	
48	(A15) P2.7		61	P4.4	
55	ALE		60	P4.5	
6	(DENn) P1.2		59	P4.6	
56	EAn		58	P4.7	
4	(GRXD) P1.0		54	PSENn	
5	(GTXD) P1.1		25	(RDn) P3.7	
10	(HLDAn) P1.6		13	RESETn	
9	(HLDn) P1.5		8	(RXCn) P1.4	
16	(INT0n) P3.2		14	(RXD) P3.0	
18	(INT1n) P3.3		19	(T0) P3.4	
1	N.C.		23	(T1) P3.5	
12	N.C.		7	(TXCn) P1.3	
17	N.C.		15	(TXD) P3.1	
20	N.C.		2	VDD	
21	N.C.		3	Vss	
22	N.C.		33	Vss	
26	N.C.		24	(WRn) P3.6	
38	N.C.		32	XTAL1	
39	N.C.		31	XTAL2	

Table 3. JA/JC Versions Alphabetic Pin Listing

2.1.2 JB/JD

The pinout for the JB/JD package is as shown in Figure 2. The corresponding pin listings are provided in Tables 4 and 5.

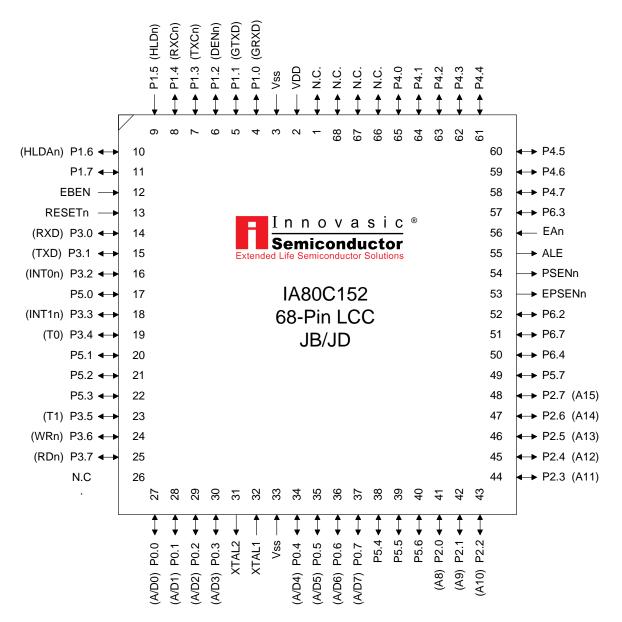


Figure 2. JB/JD Versions Package Diagram

IA211040524-06 UNCONTROLLED WHEN PRINTED OR COPIED Page 13 of 61

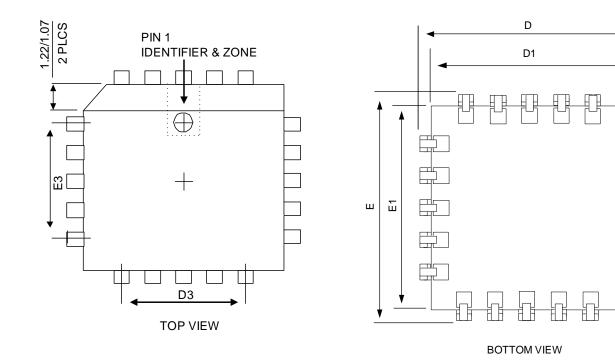
		I Г		
Pin	Name	_	Pin	Name
1	N.C.		35	(A/D5) P0.5
2	VDD		36	(A/D6) P0.6
3	Vss		37	(A/D7) P0.7
4	P1.0 (GRXD)		38	P5.4
5	P1.1 (GTXD)		39	P5.5
6	P1.2 (DENn)		40	P5.6
7	P1.3 (TXCn)		41	(A8) P2.0
8	P1.4 (RXCn)		42	(A9) P2.1
9	P1.5 (HLDn)		43	(A10) P2.2
10	(HLDAn) P1.6		44	P2.3 (A11)
11	P1.7		45	P2.4 (A12)
12	EBEN		46	P2.5 (A13)
13	RESETn		47	P2.6 (A14)
14	(RXD) P3.0		48	P2.7 (A15)
15	(TXD) P3.1		49	P5.7
16	(INT0n) P3.2		50	P6.4
17	P5.0		51	P6.7
18	(INT1n) P3.3		52	P6.2
19	(T0) P3.4		53	EPSENn
20	P5.1		54	PSENn
21	P5.2		55	ALE
22	P5.3		56	EAn
23	(T1) P3.5		57	P6.3
24	(WRn) P3.6		58	P4.7
25	(RDn) P3.7		59	P4.6
26	N.C.		60	P4.5
27	(A/D0) P0.0		61	P4.4
28	(A/D1) P0.1		62	P4.3
29	(A/D2) P0.2		63	P4.2
30	(A/D3) P0.3		64	P4.1
31	XTAL2		65	P4.0
32	XTAL1		66	N.C.
33	Vss		67	N.C.
34	(A/D4) P0.4		68	N.C.

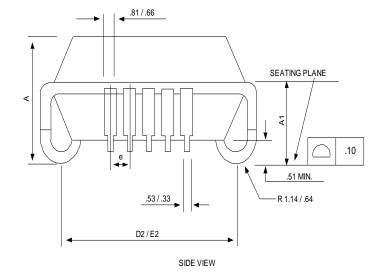
Table 4. JB/JD Versions Numeric Pin Listing

IA211040524-06 UNCONTROLLED WHEN PRINTED OR COPIED Page 14 of 61

PinNamePinName27(A/D0) P0.064P4.128(A/D1) P0.163P4.229(A/D2) P0.262P4.330(A/D3) P0.361P4.434(A/D4) P0.460P4.535(A/D5) P0.559P4.636(A/D6) P0.658P4.737(A/D7) P0.717P5.041(A8) P2.020P5.142(A9) P2.121P5.243(A10) P2.222P5.344(A11) P2.338P5.445(A12) P2.439P5.546(A13) P2.540P5.647(A14) P2.649P5.755ALE57P6.36(DENn) P1.250P6.456EAn51P6.753EPSENn25(RDn) P3.74(GRXD) P1.013RESETn5(GTXD) P1.18(RXCn) P1.410(HLDn) P1.519(T0) P3.416(INT0n) P3.213RESETn54N.C.23(T1) P3.518(INT1n) P3.37(TXD) P3.126N.C.3Vss68N.C.24(WRn) P3.611P1.732XTAL165P4.031XTAL2				
28 (A/D1) P0.1 63 P4.2 29 (A/D2) P0.2 62 P4.3 30 (A/D3) P0.3 61 P4.4 34 (A/D4) P0.4 60 P4.5 35 (A/D5) P0.5 59 P4.6 36 (A/D7) P0.7 17 P5.0 41 (A8) P2.0 20 P5.1 42 (A9) P2.1 21 P5.2 43 (A10) P2.2 22 P5.3 44 (A11) P2.3 38 P5.4 45 (A12) P2.4 39 P5.5 46 (A13) P2.5 40 P5.6 47 (A14) P2.6 49 P5.7 48 (A15) P2.7 52 P6.2 55 ALE 57 P6.3 6 (DENn) P1.2 50 P6.4 56 EAn 51 P6.7 53 EPSENn 25 (RDn) P3.7 4 (GRXD) P1.0 13 R	Pin	Name	Pin	Name
29 (A/D2) P0.2 62 P4.3 30 (A/D3) P0.3 61 P4.4 34 (A/D4) P0.4 60 P4.5 35 (A/D5) P0.5 59 P4.6 36 (A/D7) P0.7 17 P5.0 41 (A8) P2.0 20 P5.1 42 (A9) P2.1 21 P5.2 43 (A10) P2.2 22 P5.3 44 (A11) P2.3 38 P5.4 45 (A12) P2.4 39 P5.5 46 (A13) P2.5 40 P5.6 47 (A14) P2.6 49 P5.7 48 (A15) P2.7 52 P6.2 55 ALE 57 P6.3 6 (DENn) P1.2 50 P6.4 56 EAn 51 P6.7 53 EPSENn 25 (RDn) P3.7 4 (GRXD) P1.0 13 RESETn 5 (GTXD) P1.1 8 (RXCn) P1.4 10 (HLDAn) P1.6 14 (RXD) P3.0 <tr< td=""><td>27</td><td>(A/D0) P0.0</td><td>-</td><td></td></tr<>	27	(A/D0) P0.0	-	
30 (A/D3) P0.3 61 P4.4 34 (A/D4) P0.4 60 P4.5 35 (A/D5) P0.5 59 P4.6 36 (A/D7) P0.7 17 P5.0 41 (A8) P2.0 20 P5.1 42 (A9) P2.1 21 P5.2 43 (A10) P2.2 22 P5.3 44 (A11) P2.3 38 P5.4 45 (A12) P2.4 39 P5.5 46 (A13) P2.5 40 P5.6 47 (A14) P2.6 49 P5.7 48 (A15) P2.7 52 P6.2 55 ALE 57 P6.3 6 (DENn) P1.2 50 P6.4 56 EAn 51 P6.7 52 (RDn) P3.7 4 (GRXD) P1.0 13 RESETn 5 (GTXD) P1.1 14 (RXD) P3.0 19 (T0) P3.4 16 (INT0n) P3.2 7 (TXCn) P1.3 15 (TXD) P3.1 16 (INT1n) P3.3 7 <td< td=""><td>28</td><td>(A/D1) P0.1</td><td>63</td><td>P4.2</td></td<>	28	(A/D1) P0.1	63	P4.2
34 (A/D4) P0.4 60 P4.5 35 (A/D5) P0.5 59 P4.6 36 (A/D7) P0.7 17 P5.0 41 (A8) P2.0 20 P5.1 42 (A9) P2.1 21 P5.2 43 (A10) P2.2 22 P5.3 44 (A11) P2.3 38 P5.4 45 (A12) P2.4 39 P5.5 46 (A13) P2.5 40 P5.6 47 (A14) P2.6 49 P5.7 48 (A15) P2.7 52 P6.2 55 ALE 57 P6.3 6 (DENn) P1.2 50 P6.4 56 EAn 51 P6.7 52 (RDn) P3.7 4 (GRXD) P1.0 13 RESETn 5 (GTXD) P1.1 8 (RXCn) P1.4 10 (HLDAn) P1.6 19 (T0) P3.4 16 (INT0n) P3.2 7 (TXCn) P1.3 15 (TXD) P3.1	29	(A/D2) P0.2	62	P4.3
35 (A/D5) P0.5 59 P4.6 36 (A/D7) P0.7 17 P5.0 41 (A8) P2.0 20 P5.1 42 (A9) P2.1 21 P5.2 43 (A10) P2.2 22 P5.3 44 (A11) P2.3 38 P5.4 45 (A12) P2.4 39 P5.5 46 (A13) P2.5 40 P5.6 47 (A14) P2.6 49 P5.7 48 (A15) P2.7 52 P6.2 55 ALE 57 P6.3 6 (DENn) P1.2 50 P6.4 56 EAn 51 P6.7 12 EBEN 54 PSENn 53 EPSENn 25 (RDn) P3.7 4 (GRXD) P1.0 13 RESETn 5 (GTXD) P1.1 8 (RXCn) P1.4 10 (HLDAn) P1.6 19 (T0) P3.4 16 (INT1n) P3.3 7	30	(A/D3) P0.3	61	P4.4
36 (A/D6) P0.6 58 P4.7 37 (A/D7) P0.7 17 P5.0 41 (A8) P2.0 20 P5.1 42 (A9) P2.1 21 P5.2 43 (A10) P2.2 22 P5.3 44 (A11) P2.3 38 P5.4 45 (A12) P2.4 39 P5.5 46 (A13) P2.5 40 P5.6 47 (A14) P2.6 49 P5.7 48 (A15) P2.7 52 P6.2 55 ALE 57 P6.3 6 (DENn) P1.2 50 P6.4 56 EAn 51 P6.7 12 EBEN 54 PSENn 53 EPSENn 25 (RDn) P3.7 4 (GRXD) P1.0 13 RESETn 5 (GTXD) P1.1 8 (RXCn) P1.4 10 (HLDAn) P1.6 19 (T0) P3.4 16 (INT1n) P3.3 7	34	(A/D4) P0.4	60	P4.5
37 (A/D7) P0.7 17 P5.0 41 (A8) P2.0 20 P5.1 42 (A9) P2.1 21 P5.2 43 (A10) P2.2 22 P5.3 44 (A11) P2.3 38 P5.4 45 (A12) P2.4 39 P5.5 46 (A13) P2.5 40 P5.6 47 (A14) P2.6 49 P5.7 48 (A15) P2.7 52 P6.2 55 ALE 57 P6.3 6 (DENn) P1.2 50 P6.4 56 EAn 51 P6.7 12 EBEN 54 PSENn 53 EPSENn 25 (RDn) P3.7 4 (GRXD) P1.0 13 RESETn 5 (GTXD) P1.1 8 (RXCn) P1.4 10 (HLDan) P1.6 19 (T0) P3.4 16 (INT0n) P3.2 15 (TXD) P3.1 26 N.C. 2 VDD 66 N.C. 3 Vss 67 <td>35</td> <td>(A/D5) P0.5</td> <td>59</td> <td>P4.6</td>	35	(A/D5) P0.5	59	P4.6
41 (A8) P2.0 20 P5.1 42 (A9) P2.1 21 P5.2 43 (A10) P2.2 22 P5.3 44 (A11) P2.3 38 P5.4 45 (A12) P2.4 39 P5.5 46 (A13) P2.5 40 P5.6 47 (A14) P2.6 49 P5.7 48 (A15) P2.7 52 P6.2 55 ALE 57 P6.3 6 (DENn) P1.2 50 P6.4 56 EAn 51 P6.7 12 EBEN 54 PSENn 53 EPSENn 25 (RDn) P3.7 4 (GRXD) P1.0 13 RESETn 5 (GTXD) P1.1 8 (RXCn) P1.4 10 (HLDAn) P1.6 14 (RXD) P3.0 9 (HLDn) P1.5 19 (T0) P3.4 16 (INT1n) P3.3 7 (TXCn) P1.3 11 N.C. 2 VDD 3 66 N.C. 3 Vss	36	(A/D6) P0.6	58	P4.7
42 (A9) P2.1 21 P5.2 43 (A10) P2.2 22 P5.3 44 (A11) P2.3 38 P5.4 45 (A12) P2.4 39 P5.5 46 (A13) P2.5 40 P5.6 47 (A14) P2.6 49 P5.7 48 (A15) P2.7 52 P6.2 55 ALE 57 P6.3 6 (DENn) P1.2 50 P6.4 56 EAn 51 P6.7 12 EBEN 54 PSENn 53 EPSENn 25 (RDn) P3.7 4 (GRXD) P1.0 13 RESETn 5 (GTXD) P1.1 8 (RXCn) P1.4 10 (HLDAn) P1.6 14 (RXD) P3.0 9 (HLDn) P1.5 19 (T0) P3.4 16 (INT1n) P3.3 7 (TXCn) P1.3 11 N.C. 2 VDD 66 N.C. 3 Vss 67 N.C. 33 Vss 68	37	(A/D7) P0.7	17	P5.0
43 (A10) P2.2 22 P5.3 44 (A11) P2.3 38 P5.4 45 (A12) P2.4 39 P5.5 46 (A13) P2.5 40 P5.6 47 (A14) P2.6 49 P5.7 48 (A15) P2.7 52 P6.2 55 ALE 57 P6.3 6 (DENn) P1.2 50 P6.4 56 EAn 51 P6.7 12 EBEN 54 PSENn 53 EPSENn 25 (RDn) P3.7 4 (GRXD) P1.0 13 RESETn 5 (GTXD) P1.1 8 (RXCn) P1.4 10 (HLDAn) P1.6 14 (RXD) P3.0 9 (HLDn) P1.5 19 (T0) P3.4 16 (INT1n) P3.3 7 (TXCn) P1.3 1 N.C. 2 VDD 66 N.C. 3 Vss 67 N.C. 33 Vss 68 N.C. 24 (WRn) P3.6 11	41	(A8) P2.0	20	P5.1
44 (A11) P2.3 38 P5.4 45 (A12) P2.4 39 P5.5 46 (A13) P2.5 40 P5.6 47 (A14) P2.6 49 P5.7 48 (A15) P2.7 52 P6.2 55 ALE 57 P6.3 6 (DENn) P1.2 50 P6.4 56 EAn 51 P6.7 12 EBEN 54 PSENn 53 EPSENn 25 (RDn) P3.7 4 (GRXD) P1.0 13 RESETn 5 (GTXD) P1.1 8 (RXCn) P1.4 10 (HLDAn) P1.6 19 (T0) P3.4 16 (INT0n) P3.2 15 (TXD) P1.3 18 (INT1n) P3.3 7 (TXCn) P1.3 1 N.C. 2 VDD 66 N.C. 3 Vss 67 N.C. 33 Vss 68 N.C. 24 (WRn) P3.6 11 P1.7 32 XTAL1 <td>42</td> <td>(A9) P2.1</td> <td>21</td> <td>P5.2</td>	42	(A9) P2.1	21	P5.2
45 (A12) P2.4 39 P5.5 46 (A13) P2.5 40 P5.6 47 (A14) P2.6 49 P5.7 48 (A15) P2.7 52 P6.2 55 ALE 57 P6.3 6 (DENn) P1.2 50 P6.4 56 EAn 51 P6.7 12 EBEN 54 PSENn 53 EPSENn 25 (RDn) P3.7 4 (GRXD) P1.0 13 RESETn 5 (GTXD) P1.1 8 (RXCn) P1.4 10 (HLDAn) P1.6 19 (T0) P3.4 16 (INT0n) P3.2 23 (T1) P3.5 18 (INT1n) P3.3 7 (TXCn) P1.3 1 N.C. 2 VDD 66 N.C. 3 Vss 67 N.C. 33 Vss 68 N.C. 24 (WRn) P3.6 11 P1.7 32 XTAL1	43	(A10) P2.2	22	P5.3
46 (A13) P2.5 40 P5.6 47 (A14) P2.6 49 P5.7 48 (A15) P2.7 52 P6.2 55 ALE 57 P6.3 6 (DENn) P1.2 50 P6.4 56 EAn 51 P6.7 12 EBEN 54 PSENn 53 EPSENn 25 (RDn) P3.7 4 (GRXD) P1.0 13 RESETn 5 (GTXD) P1.1 8 (RXCn) P1.4 10 (HLDan) P1.6 14 (RXD) P3.0 9 (HLDn) P1.5 19 (T0) P3.4 16 (INT0n) P3.2 23 (T1) P3.5 18 (INT1n) P3.3 7 (TXCn) P1.3 1 N.C. 2 VDD 66 N.C. 3 Vss 67 N.C. 33 Vss 68 N.C. 24 (WRn) P3.6 11 P1.7 32 XTAL1	44	(A11) P2.3	38	P5.4
46 (A13) P2.5 40 P5.6 47 (A14) P2.6 49 P5.7 48 (A15) P2.7 52 P6.2 55 ALE 57 P6.3 6 (DENn) P1.2 50 P6.4 56 EAn 51 P6.7 12 EBEN 54 PSENn 53 EPSENn 25 (RDn) P3.7 4 (GRXD) P1.0 13 RESETn 5 (GTXD) P1.1 8 (RXCn) P1.4 10 (HLDan) P1.6 14 (RXD) P3.0 9 (HLDn) P1.5 19 (T0) P3.4 16 (INT0n) P3.2 23 (T1) P3.5 18 (INT1n) P3.3 7 (TXCn) P1.3 1 N.C. 2 VDD 66 N.C. 3 Vss 67 N.C. 33 Vss 68 N.C. 24 (WRn) P3.6 11 P1.7 32 XTAL1	45	(A12) P2.4	39	P5.5
48 (A15) P2.7 52 P6.2 55 ALE 57 P6.3 6 (DENn) P1.2 50 P6.4 56 EAn 51 P6.7 12 EBEN 54 PSENn 53 EPSENn 25 (RDn) P3.7 4 (GRXD) P1.0 13 RESETn 5 (GTXD) P1.1 8 (RXCn) P1.4 10 (HLDAn) P1.6 14 (RXD) P3.0 9 (HLDn) P1.5 19 (T0) P3.4 16 (INT0n) P3.2 23 (T1) P3.5 18 (INT1n) P3.3 7 (TXCn) P1.3 1 N.C. 2 VDD 66 N.C. 3 Vss 67 N.C. 33 Vss 68 N.C. 24 (WRn) P3.6 11 P1.7 32 XTAL1	46		40	P5.6
48 (A15) P2.7 52 P6.2 55 ALE 57 P6.3 6 (DENn) P1.2 50 P6.4 56 EAn 51 P6.7 12 EBEN 54 PSENn 53 EPSENn 25 (RDn) P3.7 4 (GRXD) P1.0 13 RESETn 5 (GTXD) P1.1 8 (RXCn) P1.4 10 (HLDAn) P1.6 14 (RXD) P3.0 9 (HLDn) P1.5 19 (T0) P3.4 16 (INT0n) P3.2 23 (T1) P3.5 18 (INT1n) P3.3 7 (TXCn) P1.3 1 N.C. 2 VDD 66 N.C. 3 Vss 67 N.C. 33 Vss 68 N.C. 24 (WRn) P3.6 11 P1.7 32 XTAL1	47	(A14) P2.6	49	P5.7
6 (DENn) P1.2 50 P6.4 56 EAn 51 P6.7 12 EBEN 54 PSENn 53 EPSENn 25 (RDn) P3.7 4 (GRXD) P1.0 13 RESETn 5 (GTXD) P1.1 8 (RXCn) P1.4 10 (HLDAn) P1.6 14 (RXD) P3.0 9 (HLDn) P1.5 19 (T0) P3.4 16 (INT0n) P3.2 23 (T1) P3.5 18 (INT1n) P3.3 7 (TXCn) P1.3 1 N.C. 2 VDD 66 N.C. 3 Vss 67 N.C. 33 Vss 68 N.C. 24 (WRn) P3.6 11 P1.7 32 XTAL1	48		52	P6.2
6 (DENn) P1.2 50 P6.4 56 EAn 51 P6.7 12 EBEN 54 PSENn 53 EPSENn 25 (RDn) P3.7 4 (GRXD) P1.0 13 RESETn 5 (GTXD) P1.1 8 (RXCn) P1.4 10 (HLDAn) P1.6 14 (RXD) P3.0 9 (HLDn) P1.5 19 (T0) P3.4 16 (INT0n) P3.2 23 (T1) P3.5 18 (INT1n) P3.3 7 (TXCn) P1.3 1 N.C. 2 VDD 66 N.C. 3 Vss 67 N.C. 33 Vss 68 N.C. 24 (WRn) P3.6 11 P1.7 32 XTAL1	55	ÂLE	57	P6.3
12 EBEN 54 PSENn 53 EPSENn 25 (RDn) P3.7 4 (GRXD) P1.0 13 RESETn 5 (GTXD) P1.1 8 (RXCn) P1.4 10 (HLDAn) P1.6 14 (RXD) P3.0 9 (HLDn) P1.5 19 (T0) P3.4 16 (INT0n) P3.2 23 (T1) P3.5 18 (INT1n) P3.3 7 (TXCn) P1.3 1 N.C. 2 VDD 66 N.C. 3 Vss 67 N.C. 33 Vss 68 N.C. 24 (WRn) P3.6 11 P1.7 32 XTAL1	6	(DENn) P1.2		P6.4
12 EBEN 54 PSENn 53 EPSENn 25 (RDn) P3.7 4 (GRXD) P1.0 13 RESETn 5 (GTXD) P1.1 8 (RXCn) P1.4 10 (HLDAn) P1.6 14 (RXD) P3.0 9 (HLDn) P1.5 19 (T0) P3.4 16 (INT0n) P3.2 23 (T1) P3.5 18 (INT1n) P3.3 7 (TXCn) P1.3 1 N.C. 2 VDD 66 N.C. 3 Vss 67 N.C. 33 Vss 68 N.C. 24 (WRn) P3.6 11 P1.7 32 XTAL1	56	EAn	51	P6.7
4 (GRXD) P1.0 13 RESETn 5 (GTXD) P1.1 8 (RXCn) P1.4 10 (HLDAn) P1.6 14 (RXD) P3.0 9 (HLDn) P1.5 19 (T0) P3.4 16 (INT0n) P3.2 23 (T1) P3.5 18 (INT1n) P3.3 7 (TXCn) P1.3 1 N.C. 15 (TXD) P3.1 26 N.C. 2 VDD 66 N.C. 3 Vss 67 N.C. 24 (WRn) P3.6 11 P1.7 32 XTAL1	12	EBEN	54	
5 (GTXD) P1.1 8 (RXCn) P1.4 10 (HLDAn) P1.6 14 (RXD) P3.0 9 (HLDn) P1.5 19 (T0) P3.4 16 (INT0n) P3.2 23 (T1) P3.5 18 (INT1n) P3.3 7 (TXCn) P1.3 1 N.C. 15 (TXD) P3.1 26 N.C. 2 VDD 66 N.C. 3 Vss 67 N.C. 33 Vss 68 N.C. 24 (WRn) P3.6 11 P1.7 32 XTAL1	53	EPSENn	25	(RDn) P3.7
10 (HLDAn) P1.6 14 (RXD) P3.0 9 (HLDn) P1.5 19 (T0) P3.4 16 (INT0n) P3.2 23 (T1) P3.5 18 (INT1n) P3.3 7 (TXCn) P1.3 1 N.C. 15 (TXD) P3.1 26 N.C. 2 VDD 66 N.C. 3 Vss 67 N.C. 24 (WRn) P3.6 11 P1.7 32 XTAL1	4	(GRXD) P1.0	13	RESETn
9 (HLDn) P1.5 19 (T0) P3.4 16 (INT0n) P3.2 23 (T1) P3.5 18 (INT1n) P3.3 7 (TXCn) P1.3 1 N.C. 15 (TXD) P3.1 26 N.C. 2 VDD 66 N.C. 3 Vss 67 N.C. 24 (WRn) P3.6 11 P1.7 32 XTAL1	5	(GTXD) P1.1	8	(RXCn) P1.4
16 (INT0n) P3.2 23 (T1) P3.5 18 (INT1n) P3.3 7 (TXCn) P1.3 1 N.C. 15 (TXD) P3.1 26 N.C. 2 VDD 66 N.C. 3 Vss 67 N.C. 24 (WRn) P3.6 11 P1.7 32 XTAL1	10	(HLDAn) P1.6	14	(RXD) P3.0
18 (INT1n) P3.3 7 (TXCn) P1.3 1 N.C. 15 (TXD) P3.1 26 N.C. 2 VDD 66 N.C. 3 Vss 67 N.C. 33 Vss 68 N.C. 24 (WRn) P3.6 11 P1.7 32 XTAL1	9	(HLDn) P1.5	19	(T0) P3.4
18 (INT1n) P3.3 7 (TXCn) P1.3 1 N.C. 15 (TXD) P3.1 26 N.C. 2 VDD 66 N.C. 3 Vss 67 N.C. 33 Vss 68 N.C. 24 (WRn) P3.6 11 P1.7 32 XTAL1	16	(INT0n) P3.2	23	(T1) P3.5
1 N.C. 15 (TXD) P3.1 26 N.C. 2 VDD 66 N.C. 3 Vss 67 N.C. 33 Vss 68 N.C. 24 (WRn) P3.6 11 P1.7 32 XTAL1	18		7	(TXCn) P1.3
26 N.C. 2 VDD 66 N.C. 3 Vss 67 N.C. 33 Vss 68 N.C. 24 (WRn) P3.6 11 P1.7 32 XTAL1	1	N.C.	15	
66 N.C. 3 Vss 67 N.C. 33 Vss 68 N.C. 24 (WRn) P3.6 11 P1.7 32 XTAL1	26	N.C.	2	
67 N.C. 33 Vss 68 N.C. 24 (WRn) P3.6 11 P1.7 32 XTAL1	66	N.C.		Vss
68 N.C. 24 (WRn) P3.6 11 P1.7 32 XTAL1	67		33	
11 P1.7 32 XTAL1	68		24	(WRn) P3.6
				· /
	65		31	

Table 5. JB/JD Versions Alphabetic Pin Listing


IA211040524-06 UNCONTROLLED WHEN PRINTED OR COPIED Page 15 of 61


nirr-Gitt

÷

2.1.3 Physical Dimensions

The package dimensions are as shown in Figure 3.

Legend:					
	68 (in Mi	llimeters)			
Symbol	Min	Max			
А	4.20	5.08			
A1	2.29	3.30			
D1	24.13	24.33			
D2	22.61	23.62			
D3	20.32	BSC			
E1	24.13	24.33			
E2	22.61	23.62			
E3	20.32	BSC			
е	1.27	BSC			
D	25.02	25.27			
E	25.02	25.27			

Figure 3. Package Dimensions

IA211040524-06 UNCONTROLLED WHEN PRINTED OR COPIED Page 16 of 61

2.2 **I/O Signal Description**

Table 6 below describes the I/O characteristics for each signal on the IC. The signal names correspond to the signal names on the pinout diagrams provided above. The (n) denotes active low.

Signal Name	Description
EAn	External Access enable. Since there is no internal ROM in the IA80C152,
	this signal has no function in the JA and JC versions and should be set to 0.
	For the JB and JD versions with EBEN, it controls program memory fetches
	from ports 0, 2 or ports 5, 6. See Table 3.
EPSENn	E-bus Program Store ENable. When EBEN is 1, this signal is the read
	strobe for external program memory. JB/JD versions only.
PSENn	Program Store ENable. When EBEN is 0, this signal is the read strobe for
	external program memory.
RESETn	Reset. When this signal is low for 3 machine cycles, the device is put into
	reset. The GSC may continue transmitting after reset is applied. An
	internal pull-up allows the use of an external capacitor to generate a power-
	on reset.
ALE	Address Latch Enable. Latches the low-byte of external memory.
EBEN	E-Bus ENable. In conjunction with EAn, EBEN designates program
	memory fetches from either Port 0,2 or Port 5,6. See Table 3.
P0.0	Port 0 - open drain 8-bit bi-directional port that is bit addressable and can
P0.1	drive up to 8 LS TTL inputs. The port signals can be used as high
P0.2	impedance inputs.
P0.3	
P0.4	This port also provides the low-byte of the multiplexed address and data

bus depending on the state of EBEN.

Table 6. I/O Signal Descriptions

P0.5

P0.6 P0.7

Signal Name	Description
P1.0 - GRXD, GSC	Port 1—8-bit bi-directional port that is bit addressable. To use a port signal
Receive	as an input, write a 1 to the port location. Internal pull-ups pull the input
P1.1 - GTXD, GSC	high and source current when the input is driven low. To use a port signal
Transmit	as an output, a 1 or 0 written to the port location is presented at the output.
P1.2 - DENn, Driver Enable	
P1.3 - TXCn, External	Port signals in this port also serve as I/O for IA80C152 functions. These I/O
Transmit Clock	signals are defined next to the port name.
P1.4 - RXCn, External	
Receive Clock	
P1.5 - HLDn, DMA Hold	
P1.6 - HLDAn, DMA Hold	
Acknowledge	
P1.7	
P2.0	Port 2—8-bit bi-directional port that is bit addressable. To use a port signal
P2.1	as an input, write a 1 to the port location. Internal pull-ups pull the input
P2.2	high and source current when the input is driven low. To use a port signal
P2.3	as an output, a 1 or 0 written to the port location is presented at the output.
P2.4	
P2.5	This port also provides the high-byte of the multiplexed address and data
P2.6	bus depending on the state of EBEN.
P2.7	
	Port 3—8-bit bi-directional port that is bit addressable. To use a port signal
P3.1 - TXD, UART	as an input, write a 1 to the port location. Internal pull-ups pull the input
Transmit	high and source current when the input is driven low. To use a port signal
P3.2 - INT0n, External	as an output, a 1 or 0 written to the port location is presented at the output.
Interrupt 0	
P3.3 - INT1n, External	Port signals in this port also serve as I/O for IA80C152 functions. These I/O
Interrupt 1	signals are defined next to the port name.
P3.4 - T0, Timer 0 External	
Input	
P3.5 - T1, Timer 1 External	
Input P3.6 - WRn, External Data	
Memory Write Strobe	
P3.7 - RDn, External Data	
Memory Read Strobe	
Internoly Read Strobe	

Table 6. I/O Signal Descriptions (Continued)

Signal Name	Description
P4.0	Port 4—8-bit bi-directional port that is bit addressable. To use a port signal
P4.1	as an input, write a 1 to the port location. Internal pull-ups pull the input
P4.2	high and source current when the input is driven low. To use a port signal
P4.3	as an output, a 1 or 0 written to the port location is presented at the output.
P4.4	
P4.5	
P4.6	
P4.7	
P5.0	Port 5—8-bit bi-directional port that is NOT bit addressable. To use the port
P5.1	as an input, write a 1 to the port location. Internal pull-ups pull the input
P5.2	high and source current when the input is driven low. To use the port as an
P5.3	output, 1s or 0s written to the port are presented at the output.
P5.4	
P5.5	This port also provides the low-byte of the multiplexed address and data
P5.6	bus depending on the state of EBEN.
P5.7	
P6.0	Port 6—8-bit bi-directional port that is NOT bit addressable. To use the port
P6.1	as an input, write a 1 to the port location. Internal pull-ups pull the input
P6.2	high and source current when the input is driven low. To use the port as an
P6.3	output, 1s or 0s written to the port are presented at the output.
P6.4	
P6.5	This port also provides the high-byte of the multiplexed address and data
P6.6	bus depending on the state of EBEN.
P6.7	
VCC	Supply Voltage
VSS	Device Ground
XTAL1	Input to the internal clock generator
XTAL2	Output from the internal oscillator amplifier

Table 6. I/O Signal Descriptions (Continued)

3. Maximum Ratings, Thermal Characteristics, and DC Parameters

The absolute maximum ratings, thermal characteristics, and DC parameters are provided in Tables 7 through 9, respectively. The input and output parametric values in the DC and AC characteristics are directly related to ambient temperature and DC supply voltage. A temperature or supply voltage range other than those specified in the operating conditions may affect these values as well as adversely affect part performance and reliability.

Stresses beyond those listed in Table 7, Absolute Maximum Ratings, may cause permanent damage to the device. Operating the device at or beyond the conditions indicated is not recommended.

Table 7. Absolute Maximum Ratings

Parameter	Rating
Storage temperature	-40°C to +125°C
Voltage on any pin to v_{ss}	-0.3V to +(v _{DD} + 0.3) V
Operating temperature	-40°C to +85°C
Power dissipation	391.1 mW (95°C, 16MHz, 15% Toggle)

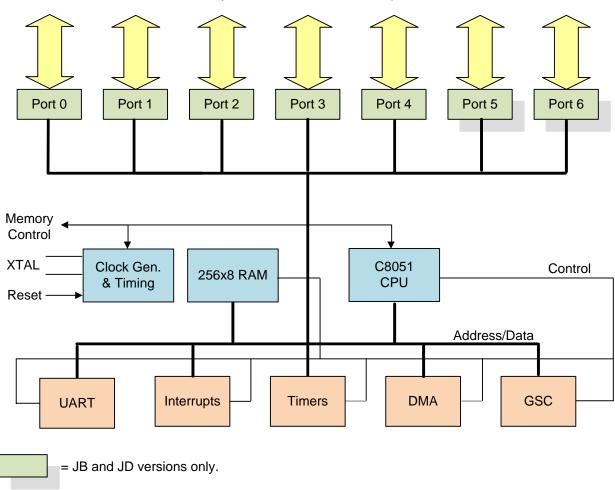
Table 8. Thermal Characteristics

Symbol	Characteristic	Value
T _A	Ambient Temperature	-40°C to 85°C

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{CC}	Supply Voltage	4.5	_	5.5	V	-
V _{IL}	Input Low Voltage (All Except XTAL1)	-	_	0.9	V	-
V _{IH}	Input High Voltage (All Except XTAL1)	2.1	—	_	V	-
V _{OL}	Output Low Voltage	-	-	0.4	V	-
V _{OH}	Output High Voltage (All Except Port 0 in		_	-	V	_
	port mode)		—	-		-
V _{OH1}	Output High Voltage (Port 0 in External Bus	3.5	—	-	V	-
	Mode)	-	_	_	_	_
I _{IL}	Logical 0 Input Current	-1	-	1	μA	No pullup or pulldown
I _{IH}	Logical 1 Input Current	-1	-	1	μA	No pullup or pulldown
l _{oz}	Input Leakage (Port 0,1,2,3,4,5,6, ALE,PSEN, EPSEN)	-10	-	10	μA	Tri-state leakage current
Rup, Rdn	Pull-up Resistor, Pull-down Resistor	-	50	-	kW	-
I _{DD} a	Power Supply Current: Active (16.5 MHz) Idle (16.5 MHz) Power Down Mode	-	-	50	mA	-
			_	-	mA	-
			_	_	μA	-

Table 9. DC Parameters

^aStatic Idd current is exclusive of input/output drive requirements and is measured with the clocks stopped and all inputs tied to Vdd or Vss configured to draw minimum current.



IA211040524-06 UNCONTROLLED WHEN PRINTED OR COPIED Page 21 of 61

4. Device Architecture

4.1 Functional Block Diagram

Figure 4 shows the major functional blocks of the IA80C152. Each version of the IA80C152 function identically to each other with the exception of the 2 additional I/O ports (Port 5 and Port 6) in the JB and JD versions.

I/O for Memory, GSC, DMA, UART, Interrupts, and Timers

4.2 Memory Space

Memory space is divided up into program and data memory. Program memory is all external to the IA80C152. Data memory is divided up into external and internal data memory. There can be up to 64K bytes of external program and data memory. Internal data memory is 256 bytes that is mapped between RAM, SFRs, and Register Banks. Figure 5 diagrams the organization of the IA80C152 memory space. See the C8051 section for further details.

Program memory is accessed using control signals and ports. On the JA and JC versions of the IA80C152 this access is performed through ports P0 and P2. Further, because there is no internal ROM, the entire program memory space is accessed via ports P0 and P2. On the JB and JD version of the IA80C152, program memory access can be through either ports P0 and P2, or ports P5 and P6. Which set of ports program memory fetches are made through is controlled by the input signals EAn and EBEN. Table 10 summarizes the IA80C152 versions and the relationship to program memory fetches.

IA211040524-06 UNCONTROLLED WHEN PRINTED OR COPIED Page 23 of 61

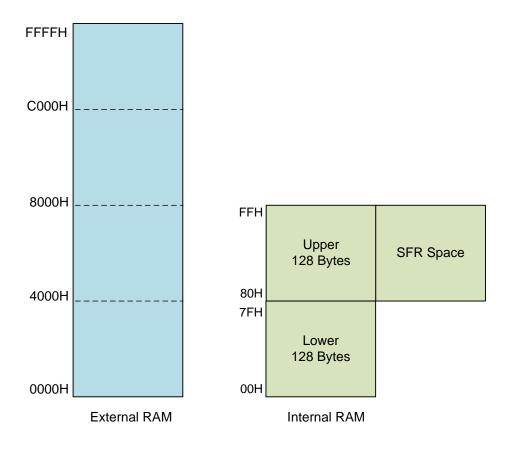


Figure 5. Memory Space

	Fetch (Control		Fetch Signal		
Version	EBEN	EAn	Fetch Ports	PSENn	EPSENn	Memory Space
JA, JC	NA	0 or 1	P0, P2	Active	-	0h–FFFFh
JB, JD	0	0	P0, P2	Active	-	0h–FFFFh
	1	0	P5, P6	-	Active	0h–FFFFh
	1	1	P5, P6	-	Active	0h–1FFFh
			P0, P2	Active	_	2000h-FFFFh

Table 10. Summary of Program Memory Fetches

5. Peripheral Architecture

5.1 Registers and Interrupts

The IA80C152 combines the register set of the 8051BH and additional SFRs for the DMA and GSC functions. Likewise, the IA80C152 combines the interrupts of the 8051BH and the interrupts required by the DMA and GSC. Tables 11 and 12 list the IA80C152 registers interrupts, respectively.

	Register	Register	Functional		Initial
Item	Name	Address	Block	Description	Value
1	А	0E0h	C8051	Accumulator	00h
2	ADR0	095h	GSC	Address Match 0	00h
3	ADR1	0A5h	GSC	Address Match 1	00h
4	ADR2	0B5h	GSC	Address Match 2	00h
5	ADR3	0C5h	GSC	Address Match 3	00h
6	AMSK0	0D5h	GSC	Address Mask 0	00h
7	AMSK1	0E5h	GSC	Address Mask 1	00h
8	В	0F0h	C8051	B Register	00h
9	BAUD	094h	GSC	Baud Rate	00h
10	BCRL0	0E2h	DMA	Byte Count Register (Low) 0	Х
11	BCRH0	0E3h	DMA	Byte Count Register (High) 0	Х
12	BCRL1	0F2h	DMA	Byte Count Register (Low) 1	Х
13	BCRH1	0F3h	DMA	Byte Count Register (High) 1	Х
14	BKOFF	0C4h	GSC	Backoff Timer	Х
15	DARL0	0C2h	DMA	Destination Address Register (Low) 0	Х
16	DARH0	0C3h	DMA	Destination Address Register (High) 0	Х
17	DARL1	0D2h	DMA	Destination Address Register (Low) 1	Х
18	DARH1	0D3h	DMA	Destination Address Register (High) 1	Х
19	DCON0	092h	DMA	DMA Control 0	00h
20	DCON1	093h	DMA	DMA Control 1	00h
21	DPH	083h	C8051	Data Pointer High	00h
22	DPL	082h	C8051	Data Pointer Low	00h
23	GMOD	084h	GSC	GSC Mode	X000000b
24	IE	0A8h	C8051	Interrupt Enable	0XX00000b
25	IEN1	0C8h	DMA, GSC	Interrupt Enable 1	XX000000b

Table 11. List of Registers

Item	Register	Register	Functional	Description	Initial
	Name	Address	Block		Value
26	IFS	0A4h	GSC	Interframe Space	00h
27	IP	0B8h	C8051	Interrupt Priority	XXX00000b
28	IPN1	0F8h	DMA, GSC	Interrupt Priority 1	XX000000b
29	MYSLOT	0F5h	GSC	GSC Slot Address	00h
30	P0	080h	C8051	Port 0	0FFh
31	P1	090h	C8051	Port 1	0FFh
32	P2	0A0h	C8051	Port 2	0FFh
33	P3	0B0h	C8051	Port 3	0FFh
34	P4	0C0h	C8051	Port 4	0FFh
35	P5	091h	C8051	Port 5	0FFh
36	P6	0A1h	C8051	Port 6	0FFh
37	PCON	087h	C8051	Power Control	0XXX0000b
38	PRBS	0E4h	GSC	Pseudo-Random Sequence	00h
39	PSW	0D0h	C8051	Program Status Word	00h
40	RFIFO	0F4h	GSC	Receive FIFO	Х
41	RSTAT	0E8h	GSC	Receive Status	00h
42	SARL0	0A2h	DMA	Source Address Register (Low) 0	Х
43	SARH0	0A3h	DMA	Source Address Register (High) 0	Х
44	SARL1	0B2h	DMA	Source Address Register (Low) 1	Х
45	SARH1	0B3h	DMA	Source Address Register (High) 1	Х
46	SBUF	099h	C8051	Serial Channel Buffer (UART)	Х
47	SCON	098h	C8051	Serial Channel Control (UART)	00h
48	SLOTTM	0B4h	GSC	GSC Slot Time	00h
49	SP	081h	C8051	Stack Pointer	07h
50	TCDCNT	0D4h	GSC	Transmit Collision Counter	Х
51	TCON	088h	C8051	Timer Control	00h
52	TFIFO	085h	GSC	Transmit FIFO	Х
53	TH0	08Ch	C8051	Timer (High) 0	00h
54	TH1	08Dh	C8051	Timer (High) 1	00h
55	TL0	08Ah	C8051	Timer (Low) 0	00h
56	TL1	08Bh	C8051	Timer (Low) 1	00h
57	TMOD	089h	C8051	Timer Modé	00h
58	TSTAT	0D8h	GSC	Transmit Status	XX000100b

 Table 11. List of Registers (Continued)

		Priority	Enable			
Interrupt	Interrupt	Symbol	Symbol	Priority	Enable	Vector
Priority	Name	Name	Name	Address	Address	Address
_	Enable All Interrupts	-	EA	-	0AFh	—
1	External Interrupt 0	PX0	EX0	0B8h	0A8h	03h
2	GSC Receive Valid	PGSRV	EGSRV	0F8h	0C8h	2Bh
3	Timer 0 Overflow	PT0	ET0	0B9h	0A9h	0Bh
4	GSC Receive Error	PGSRE	EGSRE	0F9h	0C9h	33h
5	DMA Channel 0 Done	PDMA0	EDMA0	0FAh	0CAh	3Bh
6	External Interrupt 1	PX1	EX1	0BAh	0AAh	13h
7	GSC Transmit Valid	PGSTV	EGSTV	0FBh	0CBh	43h
8	DMA Channel 1 Done	PDMA1	EDMA1	0FCh	0CCh	53h
9	Timer 1 Overflow	PT1	ET1	0BBh	0ABh	1Bh
10	GSC Transmit Error	PGSTE	EGSTE	0FDh	0CDh	4Bh
11	UART Transmit/Receive	PS	ES	0BCh	0ACh	23h

Table 12. List of Interrupts

5.2 Register Set Descriptions

The following are detailed descriptions for the IA80C152 register set. This register set is the same for all versions of the IA80C152. There is no difference between the IA80C152 register set and the register set for the original device.

In addition to the registers listed below, there are four banks of eight general purpose registers (R0 through R7) which reside within internal RAM space. Selection of these register banks is controlled through the Program Status Word (PSW).

The register descriptions are listed in alphanumeric order. The asterisk (*) indicates the register is bit addressable.

5.2.1 A* (0E0h)

Accumulator register used for various memory, arithmetic, and logic operations.

5.2.2 ADR0,1,2,3 (095h, 0A5h, 0B5h, 0c5h)

Address match registers contain the values which determine which data will be accepted as valid by the GSC. If using 8 bit addressing mode a match with any of the four registers will cause the data to be accepted. If using 16 bit addressing mode a match with the pairs ADR1 and ADR0 or ADR3 and ADR2 will cause the data to be accepted. A received address of all 1s will be accepted regardless of whether the address mode is 16 bit or 8 bit.

5.2.3 AMSK0,1 (0D5h, 0E5h)

Address Match Mask registers are used to set the corresponding bit in Address match registers to don't care. Setting the bit to a one in the AMSK register sets the corresponding bit in the ADR register to don't care.

5.2.4 B* (0F0h)

The B register used for multiply and divide instructions. May also be used as a general purpose register.

5.2.5 BAUD (094h)

Contains the value to be used by the baud rate determining equation. The value written to BAUD will actually be stored in a reload register. When the BAUD register contents are decremented to 00H the BAUD register will be reloaded from the reload register. Reading the BAUD register yields the current baud rate timer value. A read during a GSC operation may not give the current value because the value in BAUD could decrement after it is read and before the read value can be stored in its destination. BAUD rate = Fosc/((BAUD + 1)*8)

5.2.6 BCRL0, BCRH0 (0E2h, 0E3h)

Byte count register low and high bytes for DMA channel 0. The two registers provide a 16-bit value representing the number of DMA transfers via channel 0. Valid count range is from 0 to 65535.

5.2.7 BCRL1, BCRH1 (0F2h, 0F3h)

Byte count register low and high bytes for DMA channel 1. The two registers provide a 16-bit value representing the number of DMA transfers via channel 1. Valid count range is from 0 to 65535.

5.2.8 BKOFF (0C4h)

An 8 bit count down timer with a clock period equal to one slot time. A user may read the register, but the register is clocked asynchronously to the CPU so invalid data can result. Writing to BKOFF will have no effect.

5.2.9 DARL0, DARH0 (0C2h, 0C3h)

Destination address register low and high bytes for DMA channel 0. The two registers provide a 16-bit value representing the address of the destination for a DMA transfer via channel 0. Valid address range is from 0 to 65535.

IA211040524-06 UNCONTROLLED WHEN PRINTED OR COPIED Page 28 of 61

5.2.10 DARL1, DARH1 (0D2h, 0D3h)

Destination address register low and high bytes for DMA channel 1. The two registers provide a 16-bit value representing the address of the destination for a DMA transfer via channel 1. Valid address range is from 0 to 65535.

5.2.11 DCON0,1 (092h, 093h)

DCON0 and DCON1 control DMA channel 0 or 1, respectively. Each bit in these 8-bit registers control the DMA transfer as described in Table 13.

Table 13. DCON0,1 Register

1	7	6	5	4	3	2	1	0
	DAS	IDA	SAS	ISA	DM	ТМ	DONE	GO

- Bit [7]—DAS → This bit in conjunction with IDA determines the destination address space.
- Bit [6]—IDA → If IDA is set to 1 then the destination address is automatically incremented after the transfer of each byte.

DAS	IDA	Destination	Auto-Increment
0	0	External Ram	NO
0	1	External Ram	YES
1	0	SFR	NO
1	1	Internal RAM	YES

- Bit [5]—SAS \rightarrow This bit in conjunction with ISA determines the source address space.
- Bit [4]—ISA → If ISA is set to 1, the source address is automatically incremented after the transfer of each byte.

SAS	ISA	Source	Auto-Increment
0	0	External Ram	NO
0	1	External Ram	YES
1	0	SFR	NO
1	1	Internal RAM	YES

Bit [3]—DM → If this bit is set to 1, the DMA channel operates in demand mode. In this mode the DMA is initiated by either an external signal or by a serial port flag depending on the value of the TM bit. If the DM bit is set to 0, DMA is initiated by setting the GO bit.

• Bit [2]—TM → If DM is 1, TM selects if DMA is initiated by an external signal (TM=1) or by a serial port bit (TM=0). If DM is 0, TM selects whether DMA transfers are in burst mode (TM=1) or in alternate cycles mode (TM=0).

DM	ТМ	Mode
0	0	Alternate Cycles
0	1	Burst
1	0	LSC/GSC Interrupt Demand
1	1	External Interrupt Demand

- Bit [1]—DONE → This bit indicates that the DMA operation has completed. It also causes an interrupt. This bit is set to 1 when BCRn equals 0 and is set to 0 when the interrupt is vectored. The user can also set and clear this bit.
- Bit [0]—GO \rightarrow If this bit is set to 1, it enables the DMA channel.

5.2.12 DPL, DPH (082h, 083h)

DPTR, or the "data pointer" consists of the two 8-bit registers, DPL and DPH. The DPTR must be used for accesses to external memory requiring 16-bit addresses.

5.2.13 GMOD (084h)

An 8-bit register that controls the GSC Modes as described in Table 14.

Table 14. GMOD Register

7	6	5	4	3	2	1	0
XTCLK	M1	M0	AL	СТ	PL1	PL0	PR

- Bit [7]—XTCLK \rightarrow This bit enables the use of an external transmit clock. A 1 enables the external clock (input on port 1, bit 3), a zero enables the internal baud rate generator.
- Bits [6-5]—M1, M0 \rightarrow These bits are the backoff mode and test mode select bits as defined in the following table.

M1	M0	Mode
0	0	Normal
0	1	Raw Transmit
1	0	Raw Receive
1	1	Alternate Backoff

In Raw Receive mode the transmitter operates normally. The receiver operates normally except that all the bytes following the BOF are loaded into the receive FIFO including the CRC.

In the Raw Transmit mode the receiver operates as normal and zero bit detection is performed in SDLC mode. The transmit output is internally connected to the receiver input for loopback testing. Data transmitted is done so without a preamble, flag or zero bit insertion and without a CRC.

In the Alternate Backoff mode the backoff is modified so it is delayed until the end of the IFS. Since the IFS time is generally longer than the slot time this should help to prevent collisions.

- Bit [4]—AL → This bit determines the address length used. If set to a 1, the 16-bit addressing is used. If set to a 0, the 8 bit addressing is used.
- Bit [3]—CT → This bit determines the CRC type used. If set to a 1, the 32-bit AUTODIN II-32 is used. If set to a 0, the 16 bit CRC-CCITT is used.
- Bits [2-1]—PL0, PL1 \rightarrow Preamble length:

PL1	PL0	Preamble length in bits
0	0	0
0	1	8
1	0	32
1	1	64

The length noted in the table includes the two-bit BOF in CSMA/CD mode but not the SDLC flag. Zero length preamble is not compatible with CSMA/CD mode.

• Bit [0]—PR → If set to a 1, the GSC is in SDLC mode. If set to a 0, the GSC is in CSMA/CD mode.

5.2.14 IE* (0A8h)

The Interrupt Enable register allows the software to select which interrupts are enabled as shown in Table 15. If a bit is 0, the interrupt is disabled. If a bit is 1, the interrupt is enabled.

Table 15. IE* Register

7	6	5	4	3	2	1	0
EA	Reserved	Reserved	ES	ET1	EX1	ET0	EX0

- Bit [7]—EA \rightarrow Enable All interrupts. This bit globally enables or disables all interrupts regardless of the state of the individual bits.
- Bit [6]—Reserved.
- Bit [5]—Reserved.

- Bit [4]—ES \rightarrow Enable or disable serial port interrupt.
- Bit [3]—ET1 \rightarrow Enable or disable Timer 1 overflow interrupt.
- Bit [2]—EX1 \rightarrow Enable or disable External Interrupt 1.
- Bit [1]—ET0 \rightarrow Enable or disable Timer 0 overflow interrupt.
- Bit [0]—EX0 \rightarrow Enable or disable External Interrupt 0.

5.2.15 IEN1* (0C8h)

The Interrupt Enable Number 1 register allows the software to select which interrupts are enabled as shown in Table 16. If a bit is 0, the interrupt is disabled. If a bit is 1, the interrupt is enabled.

Table 16. IEN1* Register

ĺ	7	6	5	4	3	2	1	0
	Reserved	Reserved	EGSTE	EDMA1	EGSTV	EDMA0	EGSRE	EGSRV

- Bit [7]—Reserved.
- Bit [6]—Reserved.
- Bit [5]—EGSTE \rightarrow Enable or disable GSC Transmit Error interrupt.
- Bit [4]—EDMA1 \rightarrow Enable or disable DMA channel 1 interrupt.
- Bit [3]—EGSTV \rightarrow Enable or disable GSC Transmit Valid interrupt.
- Bit [2]—EDMA0 \rightarrow Enable or disable DMA channel 0 interrupt.
- Bit [1]—EGSRE \rightarrow Enable or disable GSC Receive Error interrupt.
- Bit [0]—EGSRV \rightarrow Enable or disable GSC Receive Valid interrupt.

5.2.16 IFS (0A4h)

The Interframe Spacing register determines the number of bit times between transmitted frames in both CSMA/CD and SDLC. Only even bit times can be used. The number written to this register is divided by two and loaded into the seven most significant bits. An interframe space is created by counting down this seven bit number twice. The value read from this register is the current count value in the upper seven bits and the first or second count down in the LSB. A 1 indicates the first count down and a 0 indicates the second count down. The value may not be valid because the register is clocked asynchronously to the CPU.

5.2.17 IP* (0B8h)

The Interrupt Priority register allows the software to select which interrupts have a higher than normal priority. If a bit is 0, the interrupt has normal priority. If a bit is 1, the interrupt has a higher priority. When multiple bits are set to higher priority, interrupts are resolved in the same order as their normal priority setting (see Table 17).

Table 17. IP* Register

7	6	5	4	3	2	1	0
Reserved	Reserved	Reserved	PS	PT1	PX1	PT0	PX0

- Bit [7]—Reserved.
- Bit [6]—Reserved.
- Bit [5]—Reserved.
- Bit [4]—PS \rightarrow Set normal or high priority level for serial port interrupt.
- Bit [3]—PT1 \rightarrow Set normal or high priority level for Timer 1 overflow interrupt.
- Bit [2]—PX1 \rightarrow Set normal or high priority level for External Interrupt 1.
- Bit [1]—PT0 \rightarrow Set normal or high priority level for Timer 0 overflow interrupt.
- Bit [0]—PX0 \rightarrow Set normal or high priority level for External Interrupt 0.

5.2.18 IPN1* (0F8h)

The Interrupt Priority Number 1 register allows the software to select which interrupts have a higher than normal priority. If a bit is 0, the interrupt has normal priority. If a bit is 1, the interrupt has a higher priority. When multiple bits are set to higher priority, interrupts are resolved in the same order as their normal priority setting (see Table 18).

Table 18. IPN1* Register

7	6	5	4	3	2	1	0
Reserved	Reserved	PGSTE	PDMA1	PGSTV	PDMA0	PGSRE	PGSRV

- Bit [7]—Reserved.
- Bit [6]—Reserved.
- Bit [5]—PGSTE \rightarrow Set normal or high priority level for GSC Transmit Error interrupt.

- Bit [4]—PDMA1 \rightarrow Set normal or high priority level for DMA channel 1 interrupt.
- Bit [3]—PGSTV \rightarrow Set normal or high priority level for GSC Transmit Valid interrupt.
- Bit [2]—PDMA0 \rightarrow Set normal or high priority level for DMA channel 0 interrupt.
- Bit [1]—PGSRE \rightarrow Set normal or high priority level for GSC Receive Error interrupt.
- Bit [0]—PGSRV \rightarrow Set normal or high priority level for GSC Receive Valid interrupt.

5.2.19 MYSLOT (0F5h)

Register that controls the slot address for the devices as well as the type of Jam used and which backoff algorithm is used during a collision (see Table 19).

 Table 19. MYSLOT Register

7	6	5	4	3	2	1	0
DCJ	DCR	SA5	SA4	SA3	SA2	SA1	SA0

- Bit [7]—DCJ \rightarrow A 1 selects DC type jam. A 0 selects AC type jam.
- Bit [6]—DCR → The Deterministic Collision Resolution register determines which
 resolution algorithm to use. Setting this bit to a 1 selects the deterministic resolution
 algorithm. The user must initialize TCDCNT with the maximum number of slots that are
 appropriate for the system. To disable the PBRS this register must be set to all 1s. If
 DCR is cleared to 0 then a random slot assignment is used. The type of random backoff
 used is selected by bits M1, M0 of the GMOD register.
- Bits [5–0]—SA5–SA0 → The six-slot address bits determine not only the address but also the priority. Addresses 0 through 63 are available with 63 having the highest priority and 1 the lowest. An address of 0 will prevent a station from transmitting during the collision resolution period.

5.2.20 P0*, P1*, P2*, P3*, P4*, P5, P6 (080h, 090h, 0A0h, 0Boh, 0C0h, 091h, 0A1h)

These registers are for I/O as defined in Table 20. Most registers have a dual function. P5 and P6 are not bit addressable and are only available in the JB and JD versions of the IC.

	Port	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P0	Function	Multipl	exed Addı	ress/Data	a				
	Bit Address	087h	086h	085h	084h	083h	082h	081h	080h
P1	Function	_	HLDAn	HLDn	RXCn	TXCn	DENn	GTXD	GRXD
	Bit Address	097h	096h	095h	094h	093h	092h	091h	090h
P2	Function		Address and User Defined						
	Bit Address	0A7h	0A6h	0A5h	0A4h	0A3h	0A2h	0A1h	0A0h
P3	Function	RDn	WRn	T1	T0	INT1n	INT0n	TXD	RXD
	Bit Address	0B7h	0B6h	0B5h	0B4h	0B3h	0B2h	0B1h	0B0h
P4	Function				User [Defined			
	Bit Address	0C7h	0C6h	0C5h	0C4h	0C3h	0C2h	0C1h	0C0h
P5	Function				User [Defined			
	Bit Address		091h						
P6	Function				User [Defined			
	Address				0A	\1h			

Table 20. P0*, P1*, P2*, P3*, P4*, P5, P6 Register

5.2.21 PCON (087h)

The Power Control register controls the power down and idle states of the IA80C152 as well as various UART, GSC, and DMA functions as defined in Table 21.

Table 21. PCON Register

7	6	5	4	3	2	1	0
SMOD	ARB	REQ	GAREN	XRCLK	GFIEN	PD	IDL

- Bit [7]—SMOD \rightarrow Doubles the baud rate of the UART if the bit is set to 1.
- Bit [6]—ARB \rightarrow The DMA (both channels) is put into Arbiter mode if the bit is set to 1.
- Bit [5]—REQ → The DMA (both channels) is put into Requester mode if the bit is set to 1.
- Bit [4]—GAREN → The GSC Auxiliary Receive Enable allows the GSC to receive back-to-back SDLC frames by setting the bit to 1. This bit has no effect in CSMA mode.
- Bit [3]—XRCLK → Setting this bit enables the External Receive Clock to be used by the receiver portion of the GSC.
- Bit [2]—GFIEN → The GSC Flag Idle Enable bit generates idle flags between transmitted SDLC frames when this bit is set to a 1. This bit has no effect in CSMA mode.

- Bit [1]—PD → The Power Down bit puts the IA80C152 into the power down power saving mode by setting this bit to a 1.
- Bit [0]—IDL → The Idle bit puts the IA80C152 into the idle power saving mode by setting this bit to a 1.

5.2.22 PRBS (0E4h)

This register contains the pseudo-random number to be used in the CSMA/CD backoff algorithm. The number is generated by using a feedback shift register clocked by the CPU phase clocks. Writing all 1s to this register will cause the register to freeze at all 1s. Writing any other value to it will cause it to start again. A read of this register will not always give the seed value due to the register being clocked by the CPUs phase clocks.

5.2.23 PSW* (0D0h)

The Program Status Word register provides arithmetic and other microcontroller status as well as control for the selection of register banks 0 through 4 (see Table 22).

Table 22. PSW* Register

7	6	5	4	3	2	1	0
CY	AC	F0	RS1	RS0	OV	Reserved	Ρ

- Bit [7]—CY → Carry Flag set to 1 if an instruction execution results in a carry/borrow from/to bit 7.
- Bit [6]—AC → Auxiliary Carry Flag set to 1 if an instruction execution results in a carry/borrow from/to bit 3.
- Bit [5]—F0 \rightarrow Flag 0 available for user defined general purpose.
- Bits [4–3]—RS1, RS0 → Register bank Select 1 bit and Register bank Select 0 bit in combination define the current register bank to be used by the microprocessor. See table below.

Register Bank	RS1	RS0	Register Bank Addresses
0	0	0	00h-07h
1	0	1	08h-0Fh
2	1	0	10h-17h
3	1	1	18h-1Fh

- Bit [2]— $OV \rightarrow$ The Overflow bit indicates an arithmetic overflow when set to a 1.
- Bit [1]—Reserved.

• Bit [0]—P → Parity flag set or cleared by the hardware each instruction to indicate odd or even number of 1s in the accumulator.

5.2.24 RFIFO (0F4h)

This is a three-byte buffer which points to the oldest data in the buffer. The buffer is loaded with receive data every time the GSC receiver receives a new byte of data.

5.2.25 RSTAT* (0E8h)

This register provides status of the GSC receiver as defined in Table 23.

Table 23. RSTAT* Register

7	6	5	4	3	2	1	0
OVR	RCABT	AE	CRCE	RDN	RFNE	GREN	HABEN

- Bit [7]—OVR → This bit is set by the GSC to indicate that the receive FIFO was full and then new data was shifted into it. AE and /or CRCE may also be set. This flag is cleared by the user.
- Bit [6]—RCABT → This bit is set by the GSC when a collision is detected after data has been loaded into the receive FIFO in CSMA/CD mode. In SDLC mode this bit indicates that 7 consecutive 1s were detected before an end flag but after data was loaded into the receive FIFO. AE may also be set.
- Bit [5]—AE → This bit is set by the GSC in CSMA/CD mode to indicate that the receiver shift register is not full and the CRC is bad when the EOF was detected. If the CRC is correct AE will not be set and a misalignment will be assumed to be caused by "dribble bits" as the line went idle. In SDLC mode AE is set if a non-byte aligned flag is received. CRCE may also be set.
- Bit [4]—CRCE \rightarrow This bit is controlled by the GSC and if set indicates that a properly aligned frame was received with a mismatched CRC.
- Bit [3]—RDN → This bit is controlled by the GSC and if set indicates a successful receive operation has occurred. This bit will not be set if a CRC, alignment, abort, or FIFO overrun error occurred.
- Bit [2]—RFNE → This bit if set indicates that the receive FIFO is not empty. This flag is controlled by the GSC. If all the data is read from the FIFO the GSC will clear the bit.
- Bit [1]—GREN → When this bit is set the receiver is enabled to accept incoming frames. RFIFO should be cleared before setting this bit by reading RFIFO until RFNE = 0. This should be done because setting GREN to a 1 clears RFIFO. It takes twelve clock cycles

for the status of RFNE to be updated after a read of RFIFO. Setting GREN also clears RDN, CRCE, AE and RCABT. GREN is cleared by hardware at the end of a reception or if receive errors are encountered. The user is responsible for setting this bit to a 1. The user or the GSC can set this bit to a 0. In CSMA/CD mode the status of GREN has no effect on whether the receiver detects a collision because the receiver always monitors the receive pin.

• Bit [0]—HABEN → The Hardware Based Acknowledge Enable when set to a 1 enables this feature.

5.2.26 SARL0, SARH0 (0A2h, 0A3h)

Source address register low and high bytes for DMA channel 0. The two registers provide a 16-bit value representing the address of the source for a DMA transfer via channel 0. Valid address range is from 0 to 65535.

5.2.27 SARL1, SARH1 (0B2h, 0B3h)

Source address register low and high bytes for DMA channel 1. The two registers provide a 16-bit value representing the address of the source for a DMA transfer via channel 1. Valid address range is from 0 to 65535.

5.2.28 SBUF (099h)

Writes to this register load the transmit register, and reads access the receive register of the LSC.

5.2.29 SCON* (098h)

This register controls the set up of the UART as defined by Table 24.

Table 24. SCON* Register

7	6	5	4	3	2	1	0
SM0	SM1	SM2	REN	TB8	RB8	ΤI	RI

• Bits [7–6]—SM0, SM1 → The combination of these 2 bits controls the mode and type of baud rate.

Mode	SM0	SM1	Description	Baud Rate
0	0	0	Shift Register	(Osc. Freq.)/12
1	0	1	8-bit UART	Variable
2	1	0	9-bit UART	(Osc. Freq.)/64 or (Osc. Freq.)/32
3	1	1	9-bit UART	Variable

- Bit [5]—SM2 → When this bit is set and the UART mode is 1, RI will not be activated unless a valid stop bit is received. When this bit is set and the UART mode is 2 or 3, RI will not be activated if the 9th bit is 0. In mode 0 SM2 should be set to 0.
- Bit [4]—REN → Setting this bit enables the UART to receive. Clearing this bit disables UART reception.
- Bit [3]—TB8 → In modes 2 and 3, the value of this bit is transmitted during the 9th bit time. This bit is set or cleared by software.
- Bit [2]—RB8 → In modes 2 and 3, this bit is the value of the 9th bit that was received by the UART. In mode 1 with SM2 = 1, this bit is the value of the stop bit received by the UART. In mode 0 RB8 is not used.
- Bit [2]—TI → Transmit Interrupt flag set by hardware at the end of the 8th bit in mode 0 or at the beginning of the stop bit in modes 1, 2, or 3. This bit must be cleared by software to clear the interrupt.
- Bit [0]—RI → Receive Interrupt flag set by hardware at the end of the 8th bit in mode 0 or halfway through the stop bit in modes 1, 2, or 3. This bit must be cleared by software to clear the interrupt.

5.2.30 SLOTTM (0B4h)

Determines the length of the slot time in CSMA/CD mode. A slot time equals SLOTTM * (1/baud rate). Reads from this location are unreliable because this register is clocked asynchronously to the CPU. Loading a value of 0 results in a slot time of 256 bit times.

5.2.31 SP (081h)

This register is the stack pointer. Its value points to the memory location that is the beginning of the stack.

5.2.32 TCDCNT (0D4h)

If probabilistic CSMA/CD is used this register contains the number of collisions. The user must clear this register before transmitting a new frame so the GSC can distinguish between a new frame and the retransmit of a frame. In deterministic backoff mode TCDCNT is used to hold the maximum number of slots.

5.2.33 TCON* (088h)

This register controls the operation of the Timers 0 and 1 and External Interrupts 0 and 1 as defined by Table 25.

IA211040524-06 UNCONTROLLED WHEN PRINTED OR COPIED Page 39 of 61

Table 25. TCON* Register

7	6	5	4	3	2	1	0
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0

- Bit [7]—TF1 → Timer overFlow 1 interrupt flag set by hardware when timer 1 overflows. Hardware clears this flag when the processor vectors to the interrupt service routine.
- Bit [6]—TR1 → Timer Run 1 flag set by software to turn on timer 1 and cleared by software to turn off timer 1.
- Bit [5]—TF0 → Timer overFlow 0 interrupt flag set by hardware when timer 0 overflows. Hardware clears this flag when the processor vectors to the interrupt service routine.
- Bit [4]—TR0 \rightarrow Timer Run 0 flag set by software to turn on timer 0 and cleared by software to turn off timer 0.
- Bit [3]—IE1 → Interrupt External 1 flag set by hardware when an edge is detected on External Interrupt 1. Hardware clears this flag when the processor vectors to the interrupt service routine.
- Bit [2]—IT1 → Interrupt Type 1 flag is set by software to specify a falling edge triggered interrupt for External Interrupt 1. The flag is cleared by software to specify a low level triggered interrupt for External Interrupt 1.
- Bit [1]—IE0 → Interrupt External 0 flag set by hardware when an edge is detected on External Interrupt 0. Hardware clears this flag when the processor vectors to the interrupt service routine.
- Bit [0]—IT0 → Interrupt Type 0 flag is set by software to specify a falling edge triggered interrupt for External Interrupt 0. The flag is cleared by software to specify a low level triggered interrupt for External Interrupt 0.

5.2.34 TFIFO (085h)

This is the 3 byte buffer used for storing GSC transmit data. If TEN is set to a 1 transmission begins as soon as data is written to TFIFO.

5.2.35 TH0, TL0 (08Ch, 08Ah)

These registers provide the high byte (TH0) and low byte (TL0) values for Timer 0. These registers may be used together or separately depending on Timer 0 mode bits.

5.2.36 TH1, TL1 (08Dh, 08Bh)

These registers provide the high byte (TH0) and low byte (TL0) values for Timer 0. These registers may be used together or separately depending on Timer 0 mode bits.

5.2.37 TMOD (089h)

This register controls the set up and modes of Timers 0 and 1 as defined by Table 26.

Table 26. TMOD Register

7	6	5	4	3	2	1	0	
	Timer	1			Timer	0		
GATE	C/Tn	M1	M0	GATE C/Tn M1 M				

- Bits [7,3]—GATE → When this bit is set, Timers/Counters may be turned on or off by the corresponding External Interrupt being high, if the appropriate TR bit is set. When this bit is cleared, Timers/Counters may only be turned on or off by the appropriate TR bit.
- Bits [6,2]—C/Tn → Counter/Timer flag. Set by software for Counter operation, cleared by software for Timer operation.
- Bit [5,4,1,0]—M1, M0 → Set the mode of the Timers/Counters as defined by the table below.

Mode	M1	M0	Description
0	0	0	8-bit Timer (THx) with 5-bit Prescalar (TLx)
1	0	1	16-bit Timer/Counter (THx cascaded with TLx)
2	1	0	8-bit Auto Reload Timer/Counter (THx), Reload Value (THx)
3	1	1	One 8-bit Timer/Counter (TL0) controlled by Timer 0 control bits. One 8-bit Timer/Counter (TH0) controlled by Timer 1 control bits. Timer 1 is stopped.

5.2.38 TSTAT* (0D8h)

This register provides status of the GSC transmitter as defined by Table 27.

Table 27. TMOD Register

7	6	5	4	3	2	1	0
LNI	NOACK	UR	TCDT	TDN	TFNF	TEN	DMA

• Bit [7]—LNI → The GSC sets this bit to indicate that the receive line is idle. In CSMA/CD mode LNI is set if GRXD remains high for ~ 1.6 bit times. LNI is cleared after a transition on GRXD. In SDLC node LNI is set if 15 consecutive ones are received.

- Bit [6]—NOACK → The GSC sets this bit to indicate that an acknowledge was not received for the previous frame. This bit will be set only if HABEN is set and no acknowledge is received before the end of the IFS. NOACK will not be set following a broadcast or a multi-cast packet.
- Bit [5]—UR → The GSC sets this bit to indicate that in DMA mode the last bit was shifted out of the transmit register and that the DMA byte count did not equal 0. When this occurs the transmitter stops without sending the CRC and the end flag.
- Bit [4]—TCDT → The GSC sets this bit to indicate that the transmission stopped due to a collision. The bit is set by a collision occurring during the data, the CRC or if there are more than 8 collisions.
- Bit [3]—TDN → The GSC sets this bit to indicate that a frame transmission completed successfully. If HABEN is set, TDN will not be set until the end of the IFS so that the acknowledge can be checked. TDN will not be set if an acknowledge is expected but not received. An acknowledge will not be expected after a broadcast or a multi-cast packet.
- Bit [2]—TFNF \rightarrow If this bit is a 1 TFIFO is not full and new data may be written to it.
- Bit [1]—TEN → When TEN is set it will cause TDN, UR, TCDT and NOACK to be reset and the TFIFO to be cleared. The transmitter will clear TEN after a successful transmission, a collision during data, CRC or end flag. The user sets the bit and the user of the GSC can clear the bit. If the bit is cleared during a transmission the transmit pin goes to a high level. This is the method used to send an abort character in SDLC. DEN is also forced to a high level. An end of transmission occurs whenever the TFIFO is emptied.
- Bit [0]—DMA → If this bit is set it indicates that the DMA channels are used to service the RFIFO and TFIFO and that GSC interrupts occur on TDN and RDN. If set it also enables UR to become set. If this bit is cleared it indicates that the GSC is operating in normal mode and interrupts occur on TFNF and RFNE.

5.3 Power Conservation Modes

There are 2 power conservation modes identified as Idle Mode and Power Down Mode. The IA80C152 pins will have values according to the Table 28 below.

Idle Mode is entered through software control of the PCON register. Idle halts processor execution and the DMA. The GSC continues to operate to the extent that it can without the processor or DMA servicing its requests. Idle mode is exited upon receipt of any enabled interrupt or invoking a hardware reset.

Power Down Mode is entered through software control of the PCON register. Power Down disables the oscillator causing all functions to stop. RAM data is maintained because power is not removed from the device. The only way to exit power down mode is to invoke a hardware reset.

	Program				Port	Port	Port	Port	Port	Port	Port
Mode	Fetch	ALE	PSENn	EPSENn ^a	0	1	2	3	4	5 ^a	6 ^a
Idle	P0, P2	1	1	1	Float	Data	Addr.	Data	Data	Data	Data
	P5, P6 ^a	1	1	1	Data	Data	Data	Data	Data	0FFh	Addr.
Power	P0, P2	0	0	1	Float	Data	Data	Data	Data	Data	Data
Down	P5, P6 ^a	0	1	0	Data	Data	Data	Data	Data	0FFh	0FFh

Table 28. Power Conservation Modes

^aJB and JD versions only.

5.4 Oscillator Pins

There are 2 methods for providing a clock to the IA80C152. One method is to provide a crystal oscillator and the other method is to provide an external clock source. When providing a crystal oscillator, the XTAL1 pin is the input and XTAL2 is the output. The min and max crystal frequencies are 3.5 and 16.5 MHz, respectively.

When providing an external clock source, XTAL1 is the input and XTAL2 has no connection. Duty cycle does not matter to the device, however, the external clock source requires a minimum pulse width of 20 ns.

Figures 6 through 13 present the external program memory read cycle, the external data memory read cycle, the external data memory write cycle, the external clock drive waveform, the shift register mode timing waveforms, the GSC receiver timings (internal baud rate generator), the GSC transmit timings (internal baud rate generator), the GSC timings (external clock) respectively. Tables 29 through 32 present the external clock drive, the local serial channel timing—shift register mode, the global serial port timing—internal baud rate generator, and the global serial port timing—external clock, respectively.

IA211040524-06 UNCONTROLLED WHEN PRINTED OR COPIED Page 43 of 61

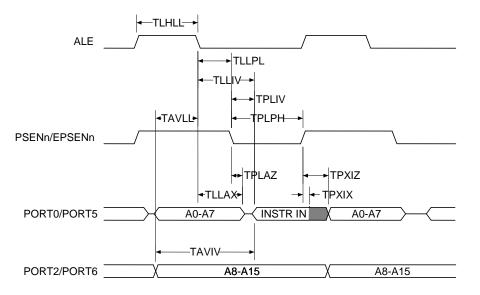
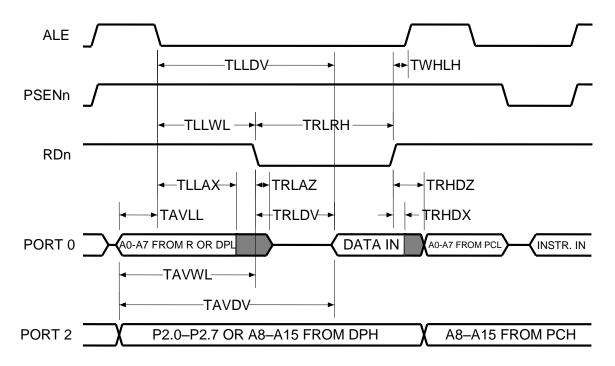



Figure 6. External Program Memory Read Cycle

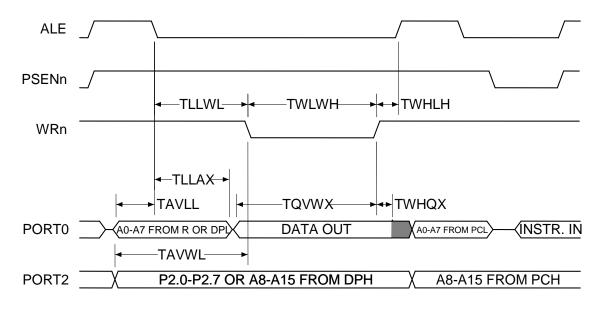


Figure 8. External Data Memory Write Cycle

IA211040524-06 UNCONTROLLED WHEN PRINTED OR COPIED Page 45 of 61

Table 29.	External	Clock Drive
-----------	----------	--------------------

Symbol	Parameter	Min	Max	Units
1/TCLCL	Oscillator Frequency	0	16.5	MHz
TCHCX	High Time	20	-	ns
TCLCX	Low Time	20	-	ns
TCLCH	Rise Time	-	TBD	ns
TCHCL	Fall Time	-	TBD	ns

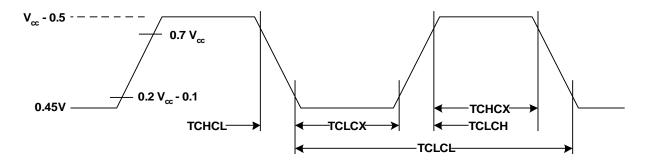


Figure 9. External Clock Drive Waveform

		16.5	MHz	Variable		
Symbol	Parameter	Min	Max	Min	Max	Units
TXLXL	Serial Port Clock Cycle Time	727	1	12TCLCL	-	ns
TQVXH	Output Data Setup to Clock Rising Edge	570	-	10TCLCL-133	-	ns
TXHQX	Output Data Hold After Clock Rising Edge	10	-	2TCLCL-117	-	ns
TXHDX	Input Data Hold After Clock Rising Edge	0	_	0	_	ns
TXHDV	Clock Rising Edge to Input Data Valid	_	480	_	10TCLCL-133	ns

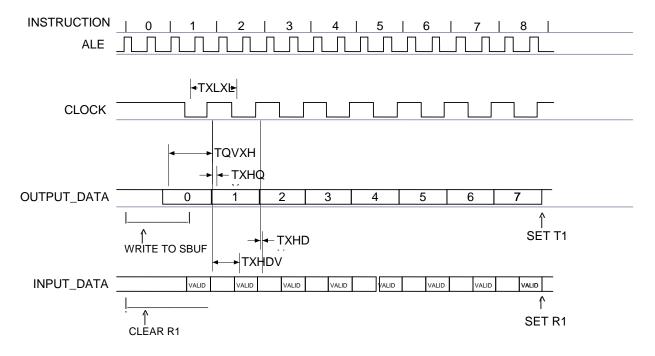


Figure 10. Shift Register Mode Timing Waveforms

		16.5 MHz (BAUD = 0)		Variable Oscillator		
Symbol	Parameter	Min	Max	Min	Max	Unit
HBTJR	Allowable jitter on the Receiver for 1/2 bit time (Manchester encoding only)	Ι	0.06	-	(0.125 × (BAUD + 1) × 8TCLCL) - 25ns	μs
FBTJR	Allowable jitter on the Receiver for one full bit time (NRZI and Manchester)	-	0.06	-	(0.125 × (BAUD + 1) × 8TCLCL) - 25ns	μs
HBTJT	Jitter of data from Transmitter for 1/2 bit time (Manchester encoding only)	-	±10	-	±10	ns
FBTJT	Jitter of data from Transmitter for one full bit time (NRZI and Manchester)	-	±10	-	±10	ns
DRTR	Data rise time for Receiver	-	TBD	_	20.00	ns
DFTR	Data fall time for Receiver	_	TBD	-	20.00	ns

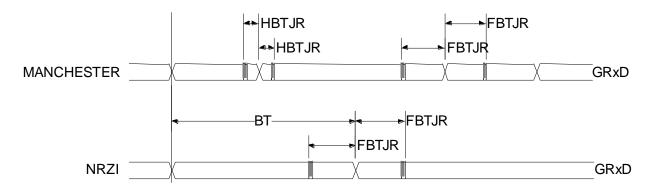


Figure 11. GSC Receiver Timings (Internal Baud Rate Generator)

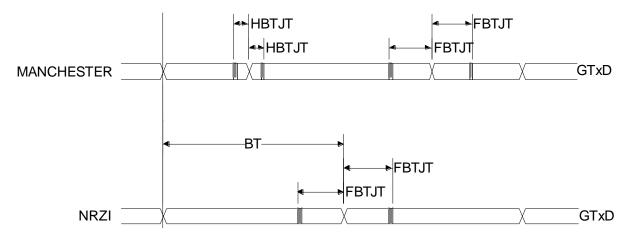
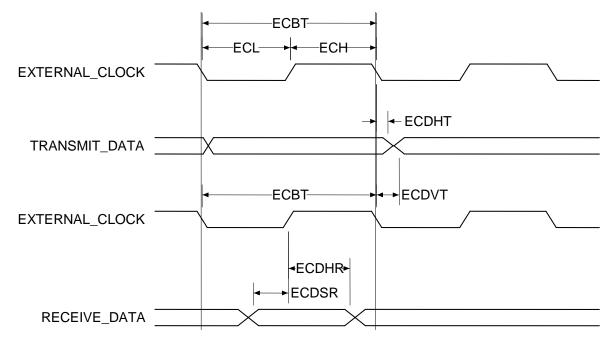



Figure 12. GSC Transmit Timings (Internal Baud Rate Generator)

		16.5 MHz		Variable Oscillator		
Symbol	Parameter	Min	Max	Min	Max	Unit
1/ECBT	GSC frequency with an external clock	-	2.4	-	Fosc × 0.145	MHz
ECH	External clock high	170	-	2TCLCL + 45	-	ns
ECL	External clock low	170	-	2TCLCL + 45	_	ns
ECRT	External clock rise time	_	TBD	-	20	ns
ECFT	External clock fall time	-	TBD	_	20	ns
ECDVT	External clock to data valid out—transmit (to external clock negative edge)	-	33	_	150	ns
ECDHT	External clock to data hold—transmit (to external clock negative edge)	3		0	-	ns
ECDSR	External clock to data set-up—receiver (to external clock positive edge)	55	-	45	-	ns
ECDHR	External clock to data hold—receiver (to external clock positive edge)	63	_	50	_	ns

Table 32.	Global Serial	Port Timing-	-External Clock
-----------	----------------------	--------------	-----------------

IA211040524-06 UNCONTROLLED WHEN PRINTED OR COPIED Page 49 of 61 http://www.Innovasic.com Customer Support: 1-888-824-4184

6. Instruction Set Summary Table

Table 33 provides a summary of the instruction set organized by hexadecimal opcode. Please refer to the original Intel Data Book for individual instruction set details.

Table 33. Instruction Set Summary

Mnemonic
NOP
AJMP addr11
LJMP addr16
RR A
INC A
INC direct
INC @R0 INC @R1
INC @R1
INC R0
INC R1
INC R2
INC R3
INC R4
INC R5
INC R6 INC R7
INC R7
JBC bit,rel
ACALL addr11
LCALL addr16
RRC A
DEC A
DEC direct
DEC @R0
DEC @R1
DEC R0
DEC R1 DEC R2
DEC R2
DEC R3
DEC R4
DEC R5 DEC R6
DEC R6
DEC R7
JB bit.rel
AJMP addr11
RET
RL A
ADD A,#data
ADD A, direct
ADD A,@R0
ADD A,@R1
ADD A,R0

IA211040524-06 UNCONTROLLED WHEN PRINTED OR COPIED Page 50 of 61

Opcode	Mnemonic
29 H	ADD A,R1
2A H	ADD A,R2
2B H	ADD A,R3
2C H	ADD A,R4
2D H	ADD A,R5
2E H	ADD A,R6
2F H	ADD A,R7
30 H	JNB bit.rel
31 H	ACALL addr11
32 H	RETI
33 H	RLC A
34 H	ADDC A,#data
35 H	ADDC A, direct
36 H	ADDC A,@R0
37 H	ADDC A,@R1
38 H	ADDC A,R0
39 H	ADDC A,R1
3A H	ADDC A,R2
3B H	ADDC A,R3
3C H	ADDC A,R4
3D H	ADDC A,R5
3E H	ADDC A,R6
3F H	ADDC A,R7
40 H	JC rel
41 H	AJMP addr11
42 H	ORL direct,A
43 H	ORL direct,#data
44 H	ORL A,#data
45 H	ORL A, direct
46 H	ORL A,@R0
47 H	ORL A,@R1
48 H	ORL A,R0
49 H	ORL A,R1
4A H	ORL A,R2
4B H	ORL A,R3
4C H	ORL A,R4
4D H	ORL A,R5
4E H	ORL A,R6
4F H	ORL A,R7
50 H	JNC rel
51 H	ACALL addr11
52 H	ANL direct,A
53 H	ANL direct,#data
54 H	ANL A,#data
55 H	ANL A, direct
56 H	ANL A,@R0

Opcode	Mnemonic
57 H	ANL A,@R1
58 H	ANL A,R0
59 H	ANL A,R1
5A H	ANL A,R2
5B H	ANL A,R3
5C H	ANL A,R4
5D H	ANL A,R5
5E H	ANL A,R6
5F H	ANL A,R7
60 H	JZ rel
61 H	AJMP addr11
62 H	XRL direct,A
63 H	XRL direct,#data
64 H	XRL A,#data
65 H	XRL A, direct
66 H	XRL A,@R0
67 H	XRL A,@R1
68 H	XRL A,R0 XRL A,R1
69 H 6A H	XRL A,R2
6B H	XRL A,R2 XRL A,R3
6C H	XRL A,R4
60 H	XRL A,R5
6E H	XRL A,R6
6F H	XRL A,R7
70 H	JNZ rel
71 H	ACALL addr11
72 H	ORL C, bit
73 H	JMP @A+DPTR
74 H	MOV A,#data
75 H	MOV direct,#data
76 H	MOV @R0,#data
77 H	MOV @R1,#data
78 H	MOV R0.#data
79 H	MOV R1.#data
7A H	MOV R2.#data
7B H	MOV R3.#data
7C H	MOV R4.#data
7D H	MOV R5.#data
7E H	MOV R6.#data
7F H	MOV R7.#data
80 H	SJMP rel
81 H	AJMP addr11
82 H	ANL C,bit
83 H	MOVC A,@A+PC
84 H	DIV AB

Opcode	Mnemonic
85 H	MOV direct, direct
86 H	MOV direct,@R0
87 H	MOV direct,@R1
88 H	MOV direct,R0
89 H	MOV direct,R1
8A H	MOV direct,R2
8B H	MOV direct,R3
8C H	MOV direct,R4
8D H	MOV direct,R5
8E H	MOV direct,R6
8F H	MOV direct,R7
90 H	MOV DPTR,#data16
91 H	ACALL addr11
92 H	MOV bit,C
93 H	MOVC A,@A+DPTR
94 H	SUBB A,#data
95 H	SUBB A, direct
96 H	SUBB A,@R0
97 H	SUBB A,@R1
98 H	SUBB A,R0
99 H	SUBB A,R1
9A H	SUBB A,R2
9B H	SUBB A,R3
9C H	SUBB A,R4
9D H	SUBB A,R5
9E H	SUBB A,R6
9F H	SUBB A,R7
A0 H	ORL C,bit
A1 H	AJMP addr11
A2 H	MOV C,bit
A3 H	INC DPTR
A4 H	MUL AB
A5 H	-
A6 H	MOV @R0,direct
A7 H	MOV @R1,direct
A8 H	MOV R0, direct
A9 H	MOV R1, direct
AA H	MOV R2, direct
AB H	MOV R3, direct
AC H	MOV R4, direct
AD H	MOV R5, direct
AE H	MOV R6, direct
AF H	MOV R7, direct
B0 H	ANL C,bit
B1 H	ACALL addr11
B2 H	CPL bit

IA211040524-06 UNCONTROLLED WHEN PRINTED OR COPIED Page 53 of 61 http://www.Innovasic.com Customer Support: 1-888-824-4184

Opcode	Mnemonic
B3 H	CPL C
B4 H	CJNE A,#data,rel
B5 H	CJNE A, direct, rel
B6 H	CJNE
	@R0,#data,rel
B7 H	CJNE
	@R1,#data,rel
B8 H	CJNE R0,#data,rel
B9 H	CJNE R1,#data,rel
BA H	CJNE R2,#data,rel
BB H	CJNE R3,#data,rel
BC H	CJNE R4,#data,rel
BD H	CJNE R5,#data,rel
BE H	CJNE R6,#data,rel
BF H	CJNE R7,#data,rel
C0 H	PUSH direct
C1 H	AJMP addr11
C2 H	CLR bit
C3 H	CLR C
C4 H	SWAP A
C5 H	XCH A, direct
C6 H	XCH A,@R0
C7 H	XCH A,@R1
C8 H	XCH A,R0
C9 H	XCH A,R1
CAH	XCH A,R2
CB H	XCH A,R3
CC H	XCH A,R4
CD H	XCH A,R5
CE H	XCH A,R6
CF H	XCH A,R7
D0 H	POP direct
D1 H	ACALL addr11
D2 H	SETB bit
D3 H	SETB C
D4 H	DA A
D5 H	DJNZ direct,rel
D6 H	XCHD A,@R0
D7 H	XCHD A,@R1
D8 H	DJNZ R0,rel
D9 H	DJNZ R1,rel
DA H	DJNZ R2,rel
DB H	DJNZ R3,rel
DC H	DJNZ R4,rel
DD H	DJNZ R5,rel
DE H	DJNZ R6,rel

Opcode	Mnemonic
DF H	DJNZ R7,rel
E0 H	MOVX A,@DPTR
E1 H	AJMP addr11
E2 H	MOVX A,@R0
E3 H	MOVX A,@R1
E4 H	CLR A
E5 H	MOV A, direct
E6 H	MOV A,@R0
E7 H	MOV A,@R1
E8 H	MOV A,R0
E9 H	MOV A,R1
EAH	MOV A,R2
EB H	MOV A,R3
EC H	MOV A,R4
ED H	MOV A,R5
EE H	MOV A,R6
EFH	MOV A,R7
F0 H	MOVX @DPTR,A
F1 H	ACALL addr11
F2 H	MOVX @R0,A
F3 H	MOVX @R1,A
F4 H	CPL A
F5 H	MOV direct,A
F6 H	MOV @R0,A
F7 H	MOV @R1,A
F8 H	MOV R0,A
F9 H	MOV R1,A
FA H	MOV R2,A
FB H	MOV R3,A
FC H	MOV R4,A
FD H	MOV R5,A
FE H	MOV R6,A
FF H	MOV R7,A

IA211040524-06 UNCONTROLLED WHEN PRINTED OR COPIED Page 55 of 61 http://www.Innovasic.com Customer Support: 1-888-824-4184

7. AC Characteristics

Table 34. External Program and Data Memory Characteristics

		16.5 MHz		Variable (Oscillator	
Symbol	Parameter	Min	Max	Min	Max	Unit
1/TCLCL	Oscillator Frequency 80C152JA/ JC 83C152JA/JC 83C152JB/JD	_	16.5	_	16.5	MHZ
	80C152JA/JC-1 83C152JA/ JC-1 80C152JB/JD-1	-	16.5	-	16.5	MHZ
TLHLL	ALE Pulse Width	125	_	2TCLCL+4	_	ns
TAVLL	Address Valid to ALE Low	48	—	TCLCL-8	-	ns
TLLAX	Address Hold After ALE Low	60	—	TCLCL-9	-	ns
TLLIV	ALE Low to Valid Instruction In	-	232	1	4TCLCL-35	ns
TLLPL	ALE Low to PSENn Low	61	—	TCLCL	-	ns
TPLPH	PSENn Pulse Width	186	—	3TCLCL+4	-	ns
TPLIV	PSENn Low to Valid Instruction In	-	172	1	3TCLCL-35	ns
TPXIX	Input Instruction Hold After PSENn	0	_	0	-	ns
TPXIZ	Input Instruction Float After PSENn	-	80	1	TCLCL-7	ns
TAVIV	Address to Valid Instruction In	-	274	-	5TCLCL-43	ns
TPLAZ	PSENn Low to Address Float	—	4	-	-	ns
TRLRH	RDn Pulse Width	351	_	6TCLCL-13	-	ns
TWLWH	WRn Pulse Width	351	—	6TCLCL-13	-	ns
TRLDV	RDn Low to Valid Data In	-	280	-	5TCLCL-35	ns
TRHDX	Data Hold After RDn	0	_	0	—	ns
TRHDZ	Data Float After RDn	-	62	-	2TCLCL-2	ns
TLLDV	ALE Low to Valid Data In	-	478	1	8TCLCL-34	ns
TAVDV	Address to Valid Data In	-	542	1	9TCLCL-42	ns
TLLWL	ALE Low to RDn or WRn Low	179	181	3TCLCL	3TCLCL	ns
TAVWL	Address to RDn or WRn Low	236	_	4TCLCL-8	_	ns
TQVWX	Data Valid to WRn Transition	344	_	TCLCL-7	-	ns
TWHQX	Data Hold After WRn	41	-	TCLCL+3	-	ns
TRLAZ	RDn Low to Address Float	-	3	_	9	ns
TWHLH	RDn or WRn High to ALE High	61	61	TCLCL	TCLCL	ns

8. Innovasic/Intel Part Number Cross-Reference Table

Table 35 shows Innovasic part numbers cross-referenced with the corresponding Intel part number.

Table 35. Innovasic/Intel Part Number Cross-Reference

Innovasic Part Number	Intel Part Number	Package Type	Temperature Grades	
IA80C152JA/JC-PLC68I-R-01 (RoHS-compliant package)	N80C152A N80C152JA N80C152JA1 N80C152JC N80C152JC1	68 Lead Plastic Leaded Chip Carrier (PLCC)	Industrial	
IA80C152JB/JD-PLC68I-R-01 (RoHS-compliant package)	N80C152JB N80C152JB1 N80C152JD N80C152JD1			

IA211040524-06 UNCONTROLLED WHEN PRINTED OR COPIED Page 57 of 61

9. Errata

The following errata are associated with all versions of the IA80C152. A workaround to the identified problem has been provided where possible.

9.1 Errata Summary

Table 36 presents a summary of errata.

Table 36. Summary of Errata

Errata No.	Problem	Rev. 01
1	Under certain circumstances, the DMA arbiter will "lock up" in alternate cycles mode. This problem occurs when one DMA channel has finished performing a transfer and another DMA initiates a transfer with the byte Count Register having been set to 0001 by the CPU.	Exists
2	Original Intel device has a linear resistor as the pullup on input RESET.	Exists
3	DMA can interfere with processing of interrupts of different priority.	Exists
4	Corruption of read data may occur if Port 0 bit written to 0.	Exists

9.2 Errata Detail

Errata No. 1

Problem: Under certain circumstances, the DMA arbiter will "lock up" in alternate cycles mode. This problem occurs when one DMA channel has finished performing a transfer and another DMA initiates a transfer with the byte Count Register having been set to 0001 by the CPU.

Workaround: Avoid using the alternate cycles DMA mode in conjunction with a byte count of one.

Errata No. 2

Problem: Original Intel device has a linear resistor as the pullup on input RESET.

Workaround: None. A non-linear resistor is on the Innovasic device. This may affect operation of certain R/C reset circuits.

IA211040524-06 UNCONTROLLED WHEN PRINTED OR COPIED Page 58 of 61

Errata No. 3

Problem: DMA can interfere with processing of interrupts of different priority.

Description: The following sequence of events must occur for this issue to occur:

- 1. A low-priority (associated priority bit not set) interrupt is accepted by the processor, but vector fetch is delayed by a DMA cycle.
- 2. During DMA cycle, a high-priority (associated priority bit set) interrupt is accepted.
- 3. After DMA cycle, the high-priority vector is fetched. No further processing of any lowpriority interrupts will occur.

Workaround: Use inherent prioritization of interrupts (all interrupts set to high or low priority only) if DMA is enabled.

Errata No. 4

Problem: Corruption of read data may occur if Port 0 bit written to 0.

Description: If any bit in Port 0 is written to a 0 while the device is configured to use P0 as address/data bus, corruption of read data may occur.

Workaround: Write all Port 0 register bits to a 1 while using P0 as address/data bus.

IA211040524-06 UNCONTROLLED WHEN PRINTED OR COPIED Page 59 of 61

Revision History

Table 37 presents the sequence of revisions to document IA211040524.

Table 37. Revision History

Date	Revision	Description	Page(s)
August 17, 2005	1	Edition released.	NA
July 27, 2007	2	Renamed data sheet for clarity	NA
August 31, 2007	3	Updated Errata and RoHS information	57, 58
June 18, 2009	4	Document reformatted to meet publication standards. Added Conventions, Acronyms and Abbreviations, and Summary of Errata table. Added new errata and added range for supply voltage in Table 9.	All
August 17, 2009	5	Added a note regarding recommendations for using the JB/JD version of the device in JA/JC applications. Revised Tables 2, 3 and 5.	7, 11, 12, 15
July 29, 2010	6	Errata 3 and 4 added.	58, 59

IA211040524-06 UNCONTROLLED WHEN PRINTED OR COPIED Page 60 of 61

10. For Additional Information

The IA80C152 is a "plug-and-play" drop-in replacement for the original Intel 80C152. Innovasic produces replacement ICs using its MILES, or Managed IC Lifetime Extension System, cloning technology. This technology produces replacement ICs far more complex than "emulation" while ensuring they are compatible with the original IC. MILES captures the design of a clone so it can be produced even as silicon technology advances. MILES also verifies the clone against the original IC so that even the "undocumented features" are duplicated. This data sheet presents engineering information about the IA80C152 including functional and I/O descriptions, electrical characteristics, and applicable timing.

The Innovasic Support Team wants its information to be complete, accurate, useful, and easy to understand. Please feel free to contact experts at Innovasic with suggestions, comments, or questions at any time.

Innovasic Support Team 3737 Princeton NE Suite 130 Albuquerque, NM 87107

(505) 883-5263 Fax: (505) 883-5477 Toll Free: (888) 824-4184 E-mail: support@innovasic.com Website: http://www.Innovasic.com

