XPFM200A+ Medical Power Supply

SPECIFICATIONS:

Ac Input

90-264 Vac, 47-63 Hz single phase.

Maximum input current at minimum input voltage and full load is 3.5 A. Active Power Factor Correction circuitry assures compliance with IEC1000-3-2, Class A.

Inrush is limited by internal thermistors. The inrush at 240 Vac, averaged over the first ac half-cycle under cold start conditions will not exceed 37 A. Worst case current under hot start conditions will be 60 Amps.

Input Protection

Internal ac fuse provided on all units. The fuse is designed to blow only if a catastrophic failure occurs in the unit. The fuse does not blow on unsustained overload or short circuit.

75% typical at full rated load, nominal input voltage, depending on load distribution.

Output Power

Continuous output power 200 W.

Overload Protection

Fully protected against short circuit and output overload. Short circuit protection is cycling type power limit on V1, 2 & 3; thermal foldback type on V4, 5, 6. Power limit factory set to cycle outputs off at 240 W typical. Recovery after removal of fault is automatic.

Over Voltage Protection

Built in on $\sqrt{1}$, 2 and 6 with firing point set per Table 1. OVP firing shuts down power supply.

Voltage Adjustment

Factory set to specified voltage. Potentiometer on V1 not considered user accessible.

No Load Turn-On/Standby
A minimum load of 1 A on V2 is required for proper regulation. If not met, no degradation of reliability will occur.

Output Regulation

Regulation for all outputs is the maximum deviation from initial set point under all line and load conditions. Initial set tolerance is measured with all outputs at 50 % of full rated load.

FEATURES:

- Medical version of ATX200 power supply
- Approved to IEC601-1 and UL2601
- Includes power factor correction to IEC1000-3-2
- Conducted emissions to CISPR11 class B/IEC601-1-2
- (marked to LVD

Remote Sense

Provided as a standard feature on V2 (+) lead of all models. Capable of compensating for 0.25 V total of cabling losses in output voltages.

Output Noise

0.5% RMS, 1% Pk-Pk, 20 MHz Bandwidth, differential mode. Measured using a differential noise probe. Probe should be placed directly across the power supply output terminals terminated with a 1uF low Z capacitor.

Transient Response

All outputs stay within their specified regulation limits with a 20% load change. Δi / Δt < 0.2 A / μs .

Hold-Up Time

25 ms total from loss of ac input at full load until loss of regulation.

Inhibit signal is pulled to the dc output common to inhibit V1 - 5 voltages. (V = < 0.4V, sink > 1.5mA)

Power Good

TTL / CMOS compatible output rises high 100 to 400 ms after V2 reaches regulation and should assure that sufficient energy is stored in the input section to provide normal power fail / shutdown.

Temperature Coefficient

0.03% / °C typical on all outputs.

Turn-On Time

Less than 2 s at 120 Vac 25°C

Storage

-40 to +85 °C.

Leakage Current

90uA under normal conditions (120 Vac @ 60 Hz). Maximum under single-fault conditions (264 Vac @ 50 Hz) is $300 \mu A$.

EMI/EMC Compliance

All models include built-in EMI filtering to meet the following emissions requirements:

EMI SPECIFICATIONS COMPLIANCE LEVEL

EN55011, Class B; FCC Class B EN61000-4-2, 6 kV contact 8 kV air Conducted Emissions Static Discharge EN61000-4-3, 3V/meter EN61000-4-4, 2 kV, 5 kHz RF Field Susceptibility Fast Transients / Bursts EN61000-4-5, 1 kV diff., 2 kV com. EN61000-4-6, 3V Surge Susceptibility

Conducted RF Susceptibility Voltage Sags & Surges EN61000-4-11

Safety Agency

All models are certified to be in compliance with the applicable requirements of UL2601-1, CSA-C22.2 No. 601.1, IEC601-1/60601-1.

Model	Output No.	Output	Minimum Current	Maximum Current	Peak (E) Current	Total Regulation	OVP Trip	Ripple and Noise	Notes
XPFM200A+	1(C)	+3.3 V	0.1 A	14 A	16 A	±4%	4 V± 0.3 V	2%	D
	2 (C)	+5.1 V	1 A	22 A	28 A	±4%	6.2 V 0.5 V	1%	
	3 (A)	+12 V	0.1 A	7 A	9 A	±5%		1%	
	4 (B)	-12 V	0 A	0.8 A	0.8 A	±8%		1%	
	5	-5 V	0 A	0.5 A	0.5 A	±6%		1%	
	6 (E)	+5 VSB	0 A	1.5 A		±4%	6.2 V ±0.8 V	2%	
XPFM200B+	1 (C)	+2.7 V	0.1 A	14 A	16 A	±4%	4 V± 0.3 V	2%	D
	2 (C)	+5 V	1 A	22 A	28 A	±4%	6.2 V 0.5 V	1%	
	3 (A)	+12 V	0.1 A	7 A	9 A	±5%		1%	
	4 (B)	-12 V	0 A	0.8 A	0.8 A	±8%		1%	
	5	-5 V	0 A	0.5 A	0.5 A	±6%		1%	
	6 (E)	+5 VSB	0 A	1.5 A		±4%	6.2 V ±0.8 V	2%	

A. To maintain regulation on V3, the +5.1 V current must be at least 1/5 of V3 and not greater than 5 times the V3 current. Required +5 V to be adjusted to within ±1% with at least a 1 A load to maintain regulation on this output.

- B. Combined current of V4, 5 must not exceed 0.8 A.
- C. Combined load for V1, 2 must not exceed 125 W.
- D. 200 Series has external fan, for internal fan replace 200 in model number with 201.
- E. V6 maximum current is 1.25 A at initial start up.

XPFM200+ MECHANICAL SPECIFICATIONS:

Environmental Specification	Operating	Non-operating		
Temperature (A)	0 to 40°C	-40 to +85°C		
Humidity (A)	0 to 95% RH	0 to 95% RH		
Shock (B)	20 g _{pk}	40 g _{pk}		
Altitude	-500 to 10,000 ft	-500 to 40,000 ft		
Vibration (C)	1.5 g _{rms} , 0.003 g²/Hz	5 g _{rms} , 0.026 g ² /Hz		

- A. Units should be allowed to warm up/operate under non-condensing conditions before application of power. Cooling provided by internal fan—heatsink temperatures should not exceed 90°C for extended periods in the installation.
- B. Random vibration—10 to 2000Hz, 6dB/octave roll-off from 350 to 2000Hz, 3orthogonal axes. Tested for 10 min./axis operating and 1 hr./axis non-operating.
- C. Shock testing—half-sinusoidal, 10 ± 3 ms duration, \pm direction, 3 orthogonal axes, total 6 shocks.