- NEW Fully Plastic TO-220 for HIGH VOLTAGE APPLICATIONS
- NEW SERIES, ENHANCED PERFORMANCE
- EASY MOUNTING
- HIGH VOLTAGE CAPABILITY (> 1500 V)
- HIGH SWITCHING SPEED
- TIGTHER hfe CONTROL
- IMPROVED RUGGEDNESS
- FULLY MOLDED INSULATED PACKAGE (U.L. COMPLIANT) FOR EASY MOUNTING
- CREEPAGE DISTANCE PATH > 4 mm

APPLICATIONS:

- HORIZONTAL DEFLECTION FOR COLOR TVs UP TO 21 INCHES

DESCRIPTION

The device is manufactured using Diffused Collector Technology for more stable operation Vs base drive circuit variations resulting in very low worst case dissipation.

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\mathrm{CBO}}$	Collector-Base Voltage $\left(\mathrm{I}_{\mathrm{E}}=0\right)$	1500	V
$\mathrm{~V}_{\text {CEO }}$	Collector-Emitter Voltage ($\left.\mathrm{I}_{\mathrm{B}}=0\right)$	600	V
$\mathrm{~V}_{\text {EBO }}$	Emitter-Base Voltage $\left(\mathrm{I}_{\mathrm{C}}=0\right)$	7	V
I_{C}	Collector Current	10	A
I_{CM}	Collector Peak Current $\left(\mathrm{t}_{\mathrm{p}}<5 \mathrm{~ms}\right)$	15	A
I_{B}	Base Current	4	A
$\mathrm{P}_{\text {tot }}$	Total Dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	40	W
$\mathrm{~V}_{\text {isol }}$	Insulation Withstand Voltage (RMS) from All Three Leads to External Heatsink	2500	V
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to 150	150
$\mathrm{~T}_{\mathrm{j}}$	Max. Operating Junction Temperature	${ }^{\circ} \mathrm{C}$	

THERMAL DATA

$R_{\text {thj-case }}$	Thermal Resistance Junction-case	Max	3.125	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
Ices	Collector Cut-off Current ($\mathrm{V}_{\mathrm{BE}}=0$)	$\begin{aligned} & V_{C E}=1500 \mathrm{~V} \\ & V_{C E}=1500 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$			$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\text {ebo }}$	Emitter Cut-off Current (I c $=0$)	$\mathrm{V}_{\text {EB }}=7 \mathrm{~V}$				1	mA
$\mathrm{V}_{\text {CEO }}$ (sus)*	Collector-Emitter Sustaining Voltage ($\mathrm{IB}_{\mathrm{B}}=0$)	$\mathrm{Ic}=100 \mathrm{~mA}$	$\mathrm{L}=25 \mathrm{mH}$	600			V
$\mathrm{V}_{\text {CE(sat) }}{ }^{*}$	Collector-Emitter Saturation Voltage	$\begin{aligned} & \mathrm{IC}=4 \mathrm{~A} \\ & \mathrm{IC}=4 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{B}}=0.8 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B}}=1.2 \mathrm{~A} \end{aligned}$			$\begin{gathered} 5 \\ 1.5 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\mathrm{BE} \text { (sat)* }}$	Base-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{C}}=4.5 \mathrm{~A}$	$\mathrm{I}_{\mathrm{B}}=1 \mathrm{~A}$			1.2	V
$\mathrm{h}_{\text {FE* }}{ }^{\text {* }}$	DC Current Gain	$\begin{aligned} & \mathrm{I} \mathrm{C}=1 \mathrm{~A} \\ & \mathrm{IC}=5 \mathrm{~A} \\ & \mathrm{I}=5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \end{aligned}$	4	$\begin{aligned} & 25 \\ & 4.5 \end{aligned}$	9	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$	INDUCTIVE LOAD Storage Time Fall Time	$\begin{aligned} & \mathrm{I} \mathrm{C}=4 \mathrm{~A} \\ & \mathrm{~L}_{\mathrm{B}}=5 \mu \mathrm{H} \\ & \mathrm{f}=16 \mathrm{KHz} \end{aligned}$	$\begin{aligned} & I_{\text {Bon }(\text { END })}=1 \mathrm{~A} \\ & V_{B B(\text { off })}=-2.5 \mathrm{~V} \\ & (\text { see figure } 1) \end{aligned}$		$\begin{aligned} & 2.6 \\ & 0.2 \end{aligned}$	$\begin{gathered} 4 \\ 0.6 \end{gathered}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$

* Pulsed: Pulse duration $=300 \mu \mathrm{~s}$, duty cycle 1.5%

Safe Operating Area

Thermal Impedance

Derating Curve

Collector Emitter Saturation Voltage

DC Current Gain

Output Characteristics

Base Emitter Saturation Voltage

DC Current Gain

Power Losses At 16 KHz

Switching Time Inductive Load

Reverse Biased SOA

Figure 1: Inductive Load Switching Test Circuit.

TO-220FH (Fully plastic High voltage) MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	4.4		4.6	0.173		0.181
B	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
E	0.45		0.7	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.3		1.8	0.051		0.070
F2	1.3		1.8	0.051		0.070
G	4.95		5.2	0.195		0.204
G1	2.4		2.7	0.094		0.106
H	10		10.4	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	0.385		0.417
L5					0.134	
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
L8	14.5		15	0.570		0.590
L9		2.4			0.094	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices orsystems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics
© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

http://www.st.com

