= \Mlkroilelﬂrnnlka
DEVELOPMENT TOOLS | COMPILERS I BOOKS

Creating the first project in

mikroPascal
PRO for ARM

Copyright © mikro€Elektronika, December 2011. All rights reserved.

1. Introduction to mikroPascal PRO for ARM

mikroPascal PRO for ARM® organizes
applications into projects consisting of a
single project file (file with the .mppar
extension) and one or more source files (files
with the .c extension). The mikroPascal PRO
for ARM® compiler allows you to manage
several projects at a time. Source files can be
compiled only if they are part of the project.

A project file contains:

* Project name and optional description;
* Target device in use;

* Device clock;

« List of the project source files;

« Binary files (*.emcl); and

« Other files.

In this reference guide, we will create a new
project, write code, compile it and test the
results. The purpose of this project is to make
microcontroller PORTA LEDs blink, which will
be easy to test.

. Ior : -

B [d& Dew Bupe Dad Bun ook Hew
&.ﬁ.‘.‘l@&!.._.é'
8 Cotepow

[B - fesr contigurari,
Pty = 3 deemy

Sev.Boasar

Saeiltaness
Exc. Nodulesr
2

riew/ T4/ mikropancal-pro

ll - wns
5 - fuen o0 r-—@-—xrr—.m PORTE, PORTY, PORTD, FORTH & PORTY 1ERS ar 4

Frapomcy [S e
FTgTER ha‘llmnnir

[T a——— A | Declarsrions sesties

Bt | [T —

® Felass O Debag . SH10_Digazal_cuspue (JGFIO_FONTA DATA SITS, _OFI0_PLGMK AIL): o/ Fes PeRTA 8 @igs |

. OFI0_Digieal Cuspus(JOFI0 PORTH DATA BTTS, OFI0_PIIGASKE ALL): // Sec PORTE as o
& Somws Mudase 3 FEIE_Dagaval_Curput |IGFID_FORTT_DATA_NITS, _GRIC_FIURGRSE_ALLIF o/ Ssr PORTC e ol
| .

| B vessnces |0 Quak Convmres |

[Breen (= H e

3 Faanage 1. Mestace Text une

L L) Fiatc M Bytecs 3 Dymamc BAM briw] 9001 FatcAAM Dy 0 Dva

L] w 12N owed BOM Briels 1963 (1*

o] P-uﬂl.r_—::n:ml\l» [t e

. phd o i s et 3

[m e wacehly: 770w 231, P06 Rk 2 -

'- = ; |
|Lea St Compied [o for STIALKHS ARMT Lyl
@ Main Toolbar @ Messages @ Project Manger
@ Code Explorer @ Code Editor @ Library Manager

@ Project Settings
Page 2

@ Image Preview

2. Hardware Connection Figure 2-1:

vaore Hardware

. X] connection
Let's make a simple “Hello world” example for the T o] A :
schematics

selected microcontroller. First thing embedded
programmers usually writeis asimple LED blinking
program. So, let's do that in a few simple lines of
Pascal code.

3

vees

<

-

[

LM3S9B95 L

10

LED blinking is just turning ON and OFF LEDs that
are connected to desired PORT pins. In order to see
the example in action, it is necessary to connect
the target microcontroller according to schematics
shown on Figure 2-1. In the project we are about
to write, we will use only PORTA, so you should
connect the LEDs to PORTA only.

vees

K7 axr KT a7

D4 N Los N o8 o7 N
LED LED LED =)

a
Pas
Pas
a7

Prior to creating a new project, it is necessary to do the following:

Step 1: Install the compiler Step 2: Start up the compiler

Install the mikroPascal PRO for ARM® compiler from the Product Double click on the compilericon in the Start menu, or on your desktop

DVD or download it from the MikroElektronika website: to Start up the mikroPascal PRO for ARM® compiler. The mikroPascal
PRO for ARM® |DE (Integrated Development Environment) will appear

http://www.mikroe.com/eng/products/view/753/mikroPascal-pro-for-arm/ on the screen. Now you are ready to start creating a new project.

Page 3

3. Creating a New Project

The process of creating a new project is very

-
simple. Select the New Project option from D

25

the Project menu as shown below. The New
Project Wizard window appears. It can also
be opened by clicking the New Project icon
from the Project toolbar.

Erojectlﬂuild Run Tools Help
Shift+Ctrl+M

Mew Project...

Open Project... Shift+Ctrl+ O

i
B
i

Open Project Group...

Recent Projects »

The New Project Wizard (Figure 3-1) will
guide you through the process of creating
a new project. The introductory window of

Welcome to the New Project
Wizard

This wizard helps you:

* Create a new project

+ Select the device for your project

» Setup device clock
* Add project files

Click Next to continue

this application contains a list of actions to
be performed when creating a new project.

=0 =N

@@ Click Next.

Page 4

Figure 3-1: Introductory window of the New Project Wizard

First thing we have to do is to specify the
general project information. This is done
by selecting the target microcontroller, it's
operating clock frequency, and of course
- naming our project. This is an important
step, because compiler will adjust the
internal settings based on this information.
Default configuration is already suggested
to us at the begining. We will not change the
microcontroller, and we will leave the default
as the choice for this project.

Mew Project Wizard ﬁ

Step 1: Project Settings:

Project Name: MyProject

Project folder: C:\Users\Public\Documents\Worlk, Browse
Device Name: LM359B95 -
Device Clock: 16.000000| MHz

Enter project name, project folder, select device name and enter a device dock
(for example: 96.235).

Note: Project name and project folder must not be left empty.

4 Back Next & Cancel

b

Figure 3-2: You can specify project name, path, device and clock in the first step

If you do not want to use the suggested path
for storing your new project, you can

. In order to do that,
follow a simple procedure:

Click the button of the Project
Settings window to open the
dialog.

Select the desired folder to be the
destination path for storing your new
project files.

Click the button to confirm your
selection and apply the new path.

Mew Project Wizard

Step 1: Project Settings:

Browse Far Folder

4 | Public Documents
> . mikroElektronika
>) RAD Studio
>). Rentcom

| | Work/
i J! Music
> [B5] Pictures

> i Videos

|

[Make New Folder] [OK,

b

nika'\mikrot Browse

device dock

Cancel

Figure 3-3: Change the destination folder using Browse For Folder dialog

Click the O button to proceed.

Mew Project Wizard ﬁ
Once we have selected the destination Step 1: Project Settings:
project folder, let's do the rest of the project
settings: Project Name:
Project folder: C:\Users\Public\Documents\Worl, Browse
Enter the n.ame of yo.ur project. Since Device Name: LM3S9B95 -
we are going to blink some LEDs,)
. K . Device Clock: 16.000000 MHz
it's appropriate to call the project
For this demonstration, we will use
Enter project name, project folder, select device name and enter a device dock
the default . Clock speed (for example: 95.235).
depends on your target hardware, and Mote: Project name and project folder must not be left empty.
whether you are using PLL or not. But
however you configure your hardware,
make sure to specify the exact clock
() that the microcontroller is 4 Back Next & Cancel
operating at.
| %

Figure 3-4: Enter project name and change device clock speed if necessary

This step allows you to include additional files
that you need in your project: some headers
or source files that you already wrote, and
that you might need in further development.
Since we are building a simple application, we
won't be adding any files at this moment.

Click

-

Mew Project Wizard

Step 2: Select files you want to add to project.
Add File To Project:
Add
Remove
File Name
Remove All
4@ Back || MNext o Cancel

L%

Figure 3-5: Add existing headers, sources or other files if necessary

Following step allows you to quickly set
whether you want to include all libraries in
your project, or not. Even if all libraries are
included, they will not consume any memory
unless they are explicitely used from within
your code. The main advantage of including
all libraries is that you will have over

available for use in your code
right away, and visible from

. We will leave this in default

configuration:

Make sure to leave
selected.

Click

-

Mew Project Wizard

Step 3: Select initial state for library manager:

Indude Libraries
@ Indude Al (Default)

) Indude None (Advanced)

Selecting all libraries is recommended for beginners.

Selecting libraries manually using Library Manager
(recommended for advanced users) results in faster compilation.

Library Manager Help

4@ Back || MNextg O

Cancel

b

Figure 3-6: Include all libraries in the project, which is a default configuration.

Mew Project Wizard ﬁ

After all configuration is done, final step

. . Step 4: You have successfully created a new project. Click "Finish” to close a wizard.
allows you to do just a bit more.

There is a check-box called
-

. . J . Open Edit Project window to set Configuration bits
at the final step. isa

specialized window which allows you to
do all the necessary oscillator and PLL
settings. We made sure that everything
is described in plain English, so you
will be able to do the settings without Chedking "Open Edit Project window™ will open "Edit project form” after
having to open the datasheet. Anyway, dosing this wizard. This enables you to set device configurations bits.

since we are only building a simple
application, we will leave it at default
configuration (internal 1L6MHz oscillator
with PLL disabled). 4 Back

Cancel

b

Figure 3-7: Choose whether to open Edit Project window after dialog closes.

Click

Blank new project created

New project is finally created. A new source
file called “LedBlinking.mbas” is created and
it contains the begin ... end block, which will
hold the program. You may notice that project
is configured according to the settings done in
the New Project Wizard.

A4 Project Settings AN

Elga Device
Mame: LM353B95 -
=g MCU Clack
W —
Frequency: 16.000000| MHz

Figure 3-8: New blank project is created with your configuration

Page 11

4. Code Example

1 program LedBlinking;
Time has come to do some coding. mikroPascal 2 .
PRO for ARM® has the unique libraries that © begin ,
enable you to do complicated tasks in a 4 { Main program }
single line of code. Built-in GPIO library S o
enables you to set configure each PORT and 6 // Set . PQR TA as digital output
enable pins that you need, without worrying U GPIO_Digital Output (RGPIO_PORTA,
about complex procedure that this operation 8 _GPIO_PINMASK ALL);
requires. To demonstrate this, we will write 9
our first line of code: 10 // Set PORTA initial value to zero
11 GPIO PORTA DATA := 0;
// Set PORTA as digital output - -
GPIO_Digital_ Output (12
@GPIO_PORTA, 13 while TRUE do
_GPIO_PINMASK ALL); 14 begin
Once we have enabled PORTA to act as digital 15 // Toggle PORTA
output, we can now initialize PORTA with 16 GPIO_PORTA_DATA := NOT GPIO_PORTA_DATA;
logic zeros on every PORT pin: 17
18 // Delay 1000 ms
// Set PORTA initial value to 0 .
GPIO PORTA DATA = 0; 19 Delay_ms (1000) ;
20 end;
Finally, in a while() loop we will toggle the 21
PORTA value, and put a 1000 ms delay, so the 22 end.

blinking is not too fast.
Figure 4-1: Complete source code of the PORTA LED blinking

Page 12

-
I mikroPascal PRO for ARM v.1.0.0 - CitUsers\Public\Documents\Work\LedBlinking.mppar [E=RE=
File Edit View Project Build Run JIools Help
e A NS NS N s s RN A = W= PN W N N S = N= T ~REE idlmi@. .2 o
§ Code Explorer =] ing.mpas &= & Project Manager [1/1] - LedBinking.mppar 5 (52
|3 | program LedBlinking: = 1@ FEIEE | EE_'I| A |3 ‘
- WWeb links & [LedBlinking.mppar
|mage ks { Declarations section } O & Sources
Active Comments . LedBlinking.mpas
- Includs gl Pegin) Binaries
Extems { Main program } IC3) Project Level Defines
Fowards I=) Image Files
- Types // Set BPORTA as digital output - |T=) EEPROM Files
- Global: GPIC_Digital_Output (BGPIC_PORTA, - [2) Active Comments Files
Functions 10 _GPIC_PINMASK_ALL); £ Output Files
= OtherFiles
// Set PORTA initial value to zero
GPIO_PORTA_DATA := 0;
&' Project Settings. F = Library Manager | 42 Project Expiorer
EigpDevice .
- while TRUE do |28 815 | 8 ubstok ‘
MR e e B begin -
Name: M35 - /) Togale PoRTA E] Erm o - B
GPIC PORTA DATA := NOT GPFIC PORTA DATA;
- - - - [Button
=48 MEU Clock @[] can_SPL
z0 // Delay 1000 ms [Compact_Flash
Delay ms(1000);
Frequency:| 16000000 MHz B (2000 - [9] Compact_Flash_FAT16
end; ®- [¥] Conversions
[C_stdib E
= Build/ Debugger Type 244 end. & C_Type
3 [EPSON_S1D13700
Buid Type R L. o @ FasH
8 Fckose Debug Figure 4-2: This is how the code looks oo
Debunger written in compiler code editor window G Fonts
Soltwrare Hardware - & B 12c il
= D ®- [¥] Keypadixd
& @] L
Messages | Quick Comverter | Led Constants
J Errors Warnings Hints - [F] Manchester
:
Line Message No. Message Text Unit & [@] Mmc
@ [¥] Mmc_FAT16
Mmc_FAT 16_Defs
- [¥] one_wire
[Port_Expander
@[] psz
& & Pam
< . 3 B Q15 -
24:5 Insert CU: \Documents\Werk!L mpa

Page 13

5. Building the Source

When we are done writing our first | Build | Run Tools Help

LedBlinking code, we can now build |'!5 Build Ctrl+F9 |

the project and create a .HEX file Rebuild All Sources Alt+F3
which can be loaded into our target 3
microcontroller, so we can test the
program on real hardware. “Building”

Build All Projects Shift+F9
Stop Build All Ctrl+F12

k Build + Program Ctrl+F11

includes compilation, linking and
optimization which is all done automatically. Build your code by clicking
on the #, icon in the main toolbar, or simply go to Build menu and
click Build [CTRL+F9]. Message window will report the details of the
building process (Figure 5-2). Compiler automatically creates necessary
output files. LedBlinking.hex (Figure 5-1) is among them.

MName Date modified Type Size
| LedBlinking.asm 2011-12-27 740 PM ASM File 1KB
| LedBlinking.brk 2011-12-277:38 PM BRK File 1KB
=] LedBlinking.cfg 2011-12-27 740 PM CFG File 1KB
E LedBlinking.dct 2011-12-27 7:40 PM Adobe lllustrator S... 625 KB
| LedBlinking.dit 2011-12-27 740 PM DLT File 11 KB
| LedBlinking.ercl 2011-12-27 740 PM EMCL File 17 KB
‘ |2 LedBlinking.hex 2011-12-27 40 PM HEX File 4 KB
| LedBlinking.leg 2011-12-27 740 PM Text Document 3KB
=] LedBlinking.Ist 2011-12-27 T40PM LST File 24 KB
=] LedBlinking.mpas 2011-12-27 1:38 PM MPAS File 1KB
£ | LedBlinking.mpas.ini 2011-12-27 1:38 PM Configuration sett... 1KB
LedBlinking. mppar 2011-12-27 740 PM mikroPascal proje... 2KB
| LedBlinking.mppar_callertable.bd¢ 2011-12-27 7:40 PM TXT File 1KB
|| LedBlinking.user.dic 2011-12-27 740 PM Text Document 0KB
| LedBlinking.dbg 2011-12-27 740 PM DBG File 133 KB

Figure 5-1: Listing of project files after building is done

Messages |Q Quick Converher|

I Errors Warnings Hints

Line Message Mo. Message Text Unit -
1] 1144 Static RAM (bytes): 0 Dynamic RAM (bytes): 98301 Static RAM (bytes): 0 Dyna
1] 1144 Used ROM (bytes): 1398 (1%) Free ROM (bytes): 260746 (39%:) Used ROM (bytes): 1398 (1°

0 145 Project Linked Successfully LedBlinking. mppar

0 140 Linked in 754 ms -
1] 141 Project 'LedBlinking.mppar’ completed: 1138 ms T
0 103 Finished successfully: 27 Dec 2011, 19:40:08 LedBlinking. mppar =]
< I | 3
24: 51 Insert Compiled Ch\Users\Public\Documents\Work\LedBlinking.mpas

Figure 5-2: After the successful compilation and linking, the message window should look something like this
Page 14

)

If you need to change the target microcontroller or clock speed, you don't have to go through the new project wizard all over again. This can be
done quickly in the Edit Project window. You can open it using Project->Edit Project [CTRL+SHIFT+E] menu option.

@

-
Edit Project =)
Oscillator So b
Tator Souree © [~MCU and Oscillator 01
[105€ Internal Osdlator(defauit) -
[5.000 MHz(reset value) -]
Enable System Clock Divider Osdillator Frequency [MHz] 16.000000 02
[pisabled -
S Clok Divi
ystem tvisor Build Type 7 Heap
[115 =] E| | @ Release =) Debug Size 2000

PLL Power Down

IPLL Power Down is enabled

PLL Bypass

[PLLis bypassed

Internal Oscillator Disable

[internal oscllator{105) & enatled

Main Oscillator Disable

[Main Oscilator (MOSC) s disabled

Auto Clock Gating

[Run-Mode Clock Gating Control used

Use RCC2 (when set, overrides the RCC register fields)

[bo not use Ree2

Oscillator Source 2

[105€ Internal Osalator (defauit)

Configuration Registers

RCC
RCCZ

:$400FEQE0
$400FEQTOD

0x78032D1
0x7C06810

General Qutput Settings ..

@—. Load Scheme

Save Scheme
Default

oK

Cancel

Figure 6-1: Edit Project Window

Page 15

o)

@

To change your MCU, just select the
desired microcontroller from the
dropdown list.

To change your oscillator settings
enter the oscillator value and adjust

oscillator configuration registers
using drop-down boxes.
Several most commonly used

oscillator settings can be loaded using
the provided oscillator “schemes”.
Load the desired scheme by clicking
the Load Scheme button.

Select whether to build a Debug
HEX, whichis necessary for hardware
debugging, or a final Release HEX,

If you want to learn more about our products, please
visit our website at www.mikroe.com. If you are
experiencing some problems with any of our products or
just need additional information, please place your ticket
at www.mikroe.com/esupport If you have any questions,
comments or business proposals, do not hesitate to
contact us at office@mikroe.com

Designed by
MikroElektronika,
December 2011.

